高性能フレキシブルエレクトロニクス創成に向けた 金誘起層交換成長法による SiGe 混晶の極低温成長と方位制御 Ultra-low temperature (≤ 250°C) formation of orientation-controlled SiGe mixed crystals by gold-induced crystallization for advanced flexible electronics 九大システム情報¹, 学振特別研究員² [○]朴鍾爀^{1,2}, 宮尾正信¹, 佐道泰造¹ Kyushu Univ.¹, JSPS Research Fellow²°J.-H. Park^{1,2}, M. Miyao¹, and T. Sadoh¹ E-mail: j park@nano.ed.kyushu-u.ac.jp

【はじめに】 プラスチックシート(軟化温度:~300℃)上における方位制御された大粒径 SiGe 混晶(≥10 µm)の低温形成技術は,高キャリヤ移動度やバンド構造変調特性を活かした高性能フレキシブルエレクトロニクスの構築に不可欠である.我々は,Au 触媒を用いた新しい低温層交換成長法(GIC)を提案している.Au は SiGe 中での固溶度が極めて低い(<5x10⁹cm⁻³)ため,残留 Au の影響がほとんど無いことが大きなメリットである.今回,Si_{1*}Ge_x(0≤x≤1)の GIC 成長を検討したので報告する[1-2].

【実験及び結果】 絶縁基板(石英,プラスチッ ク)上に電子線堆積法にて Au 膜(膜厚: 50 nm) を形成した後, Al₂O₃(膜厚: 0-10 nm), a-SiGe(膜 厚: 50 nm)を, それぞれ RF スパッタ法, 分子 線法を用いて堆積し、a-SiGe/Al₂O₃/Au/絶縁基 板の積層試料を作製した.その後,窒素雰囲気 中で熱処理(250°C)し、層交換成長を誘起した [Fig.1(a)]. 成長層の Ge 濃度をラマン分光法に より評価したところ、初期 Ge 濃度と一致した SiGe 混晶が形成される事が明らかになった. GIC 法により全 Ge 濃度の SiGe の成長温度が 250℃に低温化できた[Fig.1(b)]. AIC 法[3,4]と 比べ, Si リッチ側で低温化の効果が大きい. Ge 試料(Al₂O₃膜厚:7nm)の外観写真と結晶方位 像を Fig.1(c)および(d)に示す. フレキシブルな プラスチック上に結晶方位が(111)に制御され, かつ大粒径(≧50 µm)を有する Ge が形成され ている. 講演では結晶方位制御機構の詳細を議 論する.

参考文献

J.-H. Park et al., ECS Trans. 35, 39 (2011).
J.-H. Park et al., APL 103, 082102 (2013).
M. Kurosawa et al., JJAP 48, 03B002 (2009).
K. Toko et al., APL 104, 022106 (2014).

Fig. 1 Schematic of sample structure (a), growth temperature of GIC and AIC [3,4] (b), and photograph (c) and EBSD image (d) of Ge sample.