RTA of MOVPE-grown Mg-doped In_xGa_{1-x}N (x~0.3) for Mg activation

Univ. of Fukui¹, JST-CREST², Osaka City Univ.³

°Md. Tanvir Hasan^{1,2}, A. Mihara^{1,2}, N. Shigekawa³, A. Yamamoto^{1,2}, M. Kuzuhara¹ E-mail: tan_vir_bd@yahoo.com

Introduction: Achieving highly conductive p-type GaN and related alloys is a key issue in the nitride semiconductor device fabrication. Nakamura et al reported that the annealing temperature (T_{act}) should be higher than 700°C for achieving low resistivity of Mg-doped GaN films [1]. For InGaN, there is a possibility that the annealing at high T_{act} can bring about phase separation [2] of grown films. Recently, we have reported that the phase separation in $In_xGa_{1-x}N$ ($x\sim0.3$) is suppressed by reducing growth temperature to around 570°C [3]. In this paper, we report the rapid thermal annealing (RTA) of Mg-doped $In_xGa_{1-x}N$ ($x\sim0.36$) grown by MOVPE. P-type samples are successfully obtained by using RTA at around 850°C.

Experiments: The growth of InGaN alloys was conducted using a MOVPE system. TEG, TMI, and NH₃ were used for Ga, In, and N sources, respectively. Cp₂Mg was used for Mg source. Growth temperature and pressure were fixed at 570°C and 150 Torr, respectively. Two types of substrates, AlN/Si and α -Al₂O₃, were employed. The growth rate of InGaN was about 0.5 µm/h with In content of 0.36. Finally, samples were annealed in N₂ using RTA. For comparison, the furnace annealing was also employed.

Results and discussion: Figure 1 shows the cross-sectional SEM images for as-grown and furnace-annealed (at 650°C for 20 min) samples. The annealed sample has a porous region in the film, showing the decomposition (phase separation) of the InGaN film [3]. Figure 2 shows the cross-sectional SEM images for as-grown and RTA (at 850°C for 10 sec) samples. One can see that no porous region exists in the annealed sample. Thus, it is confirmed

Fig.1. Cross-sectional SEM images for as-grown and furnace-annealed (at 650°C for 20 min) samples.

Fig.2. Cross-sectional SEM images for as-grown and RTA (at 850°C for 10 sec) samples.

that the decomposition of InGaN can be suppressed by reducing annealing time, even if T_{act} is much higher than growth temperature.

Figure 3 shows the T_{act} dependence of carrier concentration and Hall mobility for RTA $In_xGa_{1-x}N$ (x~0.36) grown at 570°C. As shown in this figure, the carrier concentration is increased and Hall mobility is decreased with increasing T_{act} . The p-type conduction was confirmed by Hall and thermovoltaic measurements for samples annealed at 850°C. For samples annealed at 700-800°C, p-type conduction was confirmed only by thermo-voltaic measurements. For the rest of samples, conduction type could not be identified. These results indicate that Mg-acceptor activation annealing should be done above 700°C.

Fig.3. Carrier concentration and mobility of RTA InGaN samples grown at 570 °C.

Conclusion: This paper reports the rapid thermal annealing (RTA) of Mg-doped $In_xGa_{1-x}N$ (x~0.36) grown by MOVPE. P-type samples are successfully obtained by using RTA at around 850°C.

This work was supported in part by "Creative research for clean energy generation using solar energy" project in CREST programs of JST, Japan.

- S. Nakamura et al., Jpn. J. Appl. Phys. **31**, L139 (1992).
- [2] I-hsiu Ho, G. B. Stringfellow, Appl. Phys. Lett., 69, 2701 (1996).
- [3] A. Yamamoto et al., Appl. Phys. Express. 7, 035502 (2014).