17p-A6-2

サファイア上にミスト CVD 成長させた α-Ga₂O₃ 薄膜の CAICISS による表面構造解析

Surface structure analysis of α-Ga₂O₃ film grown on α-Al₂O₃ by mist CVD using CAICISS

阪大院工¹, 京大院工², ROCA(株)³^O丹波 大樹¹, 尾坂 駿¹, 岡坂 翔太¹, 織田 真也^{2.3}, 田畑 博史¹, 久保 理¹, 藤田 静雄², 片山 光浩¹

Osaka Univ.¹, Kyoto Univ.², ROCA K. K.³ ^oD. Tamba¹, S. Osaka¹, S. Okasaka¹, M. Oda^{2,3}, H. Tabata¹,

O. kubo¹, S. Fujita², and M. Katayama¹

E-mail: tamba@nmc.eei.eng.osaka-u.ac.jp

[はじめに] 酸化ガリウム (Ga₂O₃) は酸化物半導体の一つであり、大 きなバンドギャップを持つことから GaN やSiC よりも高耐圧かつ低 損失な材料として期待されている。Ga₂O₃は結晶多形を持つが、その 中でもα-Ga₂O₃は、最近ミスト CVD 法により低コストで成長可能で あることが発見された^[1]。α-Ga₂O₃はコランダム構造を持ち、他のコ ランダム結晶との混晶によりエネルギーギャップの操作が可能であ る等^[2]の新機能創生が期待できる事から、注目が高まってきている。 α-Ga₂O₃をパワーデバイス等に利用する際には、電極とのコンタク トの理解が重要であるが、現在のところ、その基礎となるα-Ga₂O₃の 表面構造が明らかになっていない。そこで、本研究では同軸型直衝突 イオン散乱分光(CAICISS)法を用いて、サファイア上α-Ga₂O₃の表面 構造の解析をおこなった。

[実験・結果] α-Ga₂O₃(0001)表面について、CAICISS スペクトル を測定した結果、Ga 原子による散乱ピークと O 原子による散乱ピー クを確認した (Fig.1)。次に、結晶の周期性を確かめるために、Ga 原 子による散乱強度の方位角依存性を測定した。その結果、結晶構造自 身が持つ3回対称性に加え、鏡面対称性も確認された(Fig.2(a))。 α-Ga2O3(0001)の単位格子は18層から成るが、3層毎にエネルギー 的に等価な構造を持つ。このため、実際には Fig.3 に示す3種類の層 のいずれかが表面終端層となって、他の等価な層とともに現れている ものと考えられ、これが鏡面対称性を示す原因となっている。次に、 3 つの終端層モデルのシミュレーション結果(Fig.2 (b)-(d))と実験結 果を比較した。その結果、Ga layer model でピーク・ディップの位置 が比較的良く一致した。このことから、c面サファイア上に成長した α-Ga₂O₃(0001)表面において、表面第1層はGa層、表面第2層はO 層であることが分かった。成長基板として用いた c 面サファイアの表 面構造も同じく表面第1層がAl層、第2層がO層であると報告され ており[3]、本実験結果から、コランダム構造における表面構造 のアナロジーを実証した。

[1] D. Shinohara *et al.*: Jpn. J. Appl. Phys, **47**, 7311 (2008).
[2] K. Kaneko *et al.*: J. Appl. Phys. **113**, 233901 (2013).
[3] T. Suzuki *et al.*: Surf. Sci. **437**, 289 (1999).
(C) 2014年 応用物理学会

Fig.2 (a) Azimuthal angle (φ) dependence of Ga intensity for α -Ga₂O₃(0001)
(b)-(d) Simulation results for three surface termination models

Ga-terminated structure model (side view)