## 17p-B2-5

## Luminescence and Scintillation Properties of Rare-earth-doped LuF<sub>3</sub>-based VUV Scintillation Crystals

NICHe, Tohoku University<sup>1</sup>, Institute of Physics AS CR, Czech Republic<sup>2</sup>, Tokuyama Corp.<sup>3</sup>, IMR, Tohoku University<sup>4</sup> <sup>°</sup>Jan Pejchal<sup>1,2</sup>, Kentaro Fukuda<sup>3</sup>, Akihiro Yamaji<sup>4</sup>, Shunsuke

Kurosawa<sup>1,4</sup>, Yuui Yokota<sup>1</sup>, Akira Yoshikawa<sup>1,4</sup>

E-mail: pejchalj@imr.tohoku.ac.jp

The new radiation detection systems based on the vacuum ultraviolet (VUV) scintillators have been developed since 2 decades ago. The VUV scintillators can be coupled with advanced VUV photodetectors such as position-sensitive gas electron multipliers (GEM), micro-pixel chambers or VUV-sensitive photomultipliers with CsI-coated photocathodes. Wide band-gap fluorides are suitable host crystals for VUV scintillators due to transparency in VUV region and possibility of doping with VUV-emitting rare-earth ions such as Nd<sup>3+</sup>,  $Er^{3+}$  or Tm<sup>3+</sup>. The rare-earth-doped LuF<sub>3</sub> single crystals have been studied recently by some of us while discovering quite promising scintillation properties. Energy transfer from the  $Er^{3+}$  ions to the Nd<sup>3+</sup> ones has been proved in the doubly-doped LuF<sub>3</sub> crystals and resulted in slight increase of light yield. Similar phenomenon is expected also for the Tm<sup>3+</sup> codoping ion, whose 4f-level structure is simpler than that of the  $Er^{3+}$ , where the energy leak to the 4f-levels was competitive to the energy transfer towards Nd<sup>3+</sup> ions. In this work we focused on the Tm-doped and doubly Tm,Nd-doped LuF<sub>3</sub> single crystals have been grown by modified micro-pulling-down method using LiF flux to diminish the melting temperature below the phase



Figure 1. Comparison of X-ray-excited radioluminescence spectra of  $LuF_3$ :Tm samples with that of  $LaF_3$ :Nd 8% reference crystal

from hexagonal to orthorhombic transition modification. The double Tm, Nd doping was chosen to test the possibility of energy transfer from the Tm<sup>3+</sup> ion to the Nd<sup>3+</sup> one. Also Tm-only-doped samples with different Tm concentration will be studied as well to choose the optimal Tm concentration. The X-ray excited radioluminescence spectra of the Tm-doped samples are compared together with that of LaF<sub>3</sub>:Nd8% reference scintillator in the figure 1. The radioluminescence intensity the LuF<sub>3</sub> samples is several times higher than that of the LaF<sub>3</sub>:Nd. The leading emission peak for Tm-doped sample related to Tm<sup>3+</sup> 5d-4f emission

is placed at 163 nm. The luminescence processes and scintillation properties will be explained and discussed further.