顕微メスバウア分光を用いた⁵⁷Fe 濃縮 BiFeO₃とBi₂Fe₄O₉薄膜の評価 Evaluation of ⁵⁷Fe-enriched BiFeO₃ & Bi₂Fe₄O₉ Thin Films by Mössbauer Microscope 静岡理工科大総合技術研究所¹,静岡理工科大理工学部²,東京理科大理学部³ ⁰田中清高¹,塚本美徳²,岡村総一郎³,吉田豊²

Shizuoka Institute of Science and Technology (SIST)^{1, 2}, Tokyo University of Science ³ [°]K. Tanaka¹, Y. Tsukamoto², S. Okamura³, and Y. Yoshida²

E-mail: k-tanaka@ob.sist.ac.jp

【はじめに】マルチフェロイック材料である BiFeO₃(以下 BFO)の Fe の価数,磁気状態,電気特性の関係に着目し,我々はメスバウ ア分光を用いて⁵⁷Feを濃縮した BFO 薄膜の研究を行っている。室 温で飽和した P-Eヒステリシス(残留分極 P_r:89µC/cm²)を示す薄膜 でも約11%の常磁性成分を含むことがメスバウア・スペクトルから明 らかであり[1],この常磁性の存在は興味深い。一方,我々が開発 している⁵⁷Feのみに応答する顕微メスバウア分光装置はFeの状態 ごとのマップが得られる特徴があり,BFO 薄膜の反強磁性成分マ ップを以前報告した[1]。今回は,顕微メスバウア分光による常磁性 成分マップを報告し,常磁性の起源や所在について考察した。

【実験方法】メスバウア分光用に⁵⁷Feを約50%まで濃縮したMOD 系前駆体溶液(濃度:0.2M)を用いた。化学溶液法により,BFO 薄 膜はPt/Ti/SiO₂/Si 基板に550℃で作製し,Bi₂Fe₄O₉薄膜はSiO₂/Si 基板に700℃で作製した。Bi/Fe 比はWDXを用いて15 点の平均 を算出し,微細構造は XRD,SEM,透過メスバウア分光を用いた。 更に,各相の分布を顕微メスバウア分光装置で観察した。

【結果と考察】**Fig. 1**の XRD より、ペロブスカイト相の BFO 薄膜 (膜厚約 500nm)と、ペロブスカイト相を二次相とする Bi₂Fe₄O₉ 薄膜 がそれぞれ得られたことを確認した。WDX より、BFO 薄膜と Bi₂Fe₄O₉ 薄膜の Bi/Fe 比は 0.93 と 0.80 であった。**Fig. 2**の透過に よるメスバウア・スペクトルより、BFO 薄膜では反強磁性成分の 6 本 線が現れ、0mm/s 付近には面積比で約 11%の常磁性成分が現れ た。一方、Bi₂Fe₄O₉ 薄膜では常磁性成分が強く現れた(約 82%)。

顕微メスバウア分光装置を用いて常磁性成分の速度 (+0.51mm/s)で観察した両薄膜の内部転換電子マップを**Fig.3**に 示す。上側は P_r :89 μ C/cm²を示す BFO 薄膜,下側はBi₂Fe₄O₉薄 膜であるが,試料形状に対応したコントラストが得られた。以前の 報告[1]での反強磁性成分(-1.07mm/s)のマップと同様に,BFO

Fig. 2. Mössbauer spectra of 57 Fe-enriched (a)BiFeO₃ and (b)Bi₂Fe₄O₉ thin films.

Fig. 3. A conversion electron map of the paramagnetic component (+0.51 mm/s) in $^{57}\text{Fe-enriched BiFeO}_3$ and $\text{Bi}_2\text{Fe}_4\text{O}_9$ thin films.

薄膜側はよく似たコントラストが得られた。内部転換電子は、メスバウア効果によって試料の表面から深さ約 100nm までの領域から放出される。この領域は BFO 薄膜の結晶粒径(約 100~300nm)と同等あるいはそれ以 下であることから、常磁性成分は主に結晶粒のシェル部分や粒界に存在していると考えられる。

【謝辞】本研究は、平成22~26年度文科省私立大学戦略的研究基盤形成支援事業「省資源型の地域産業創成を目指した 微量元素分析・マッピング技術の開発と応用」の一部として行われた。

[1] K. Tanaka, Y. Tsukamoto, S Okamura, and Y. Yoshida: Jpn. J. Appl. Phys. 52(2013)09KB02.