CoFeB センシング層を適用したセンサ用磁気トンネル接合における 磁気特性の MgO キャップ層膜厚依存性

Dependences of magnetic characteristics on thickness of MgO capping layer in magnetic tunnel junctions of CoFeB sensing layer for sensor applications

超低電圧デバイス技術研究組合(LEAP)¹, ^O津嵜 陽亮¹, 長永 隆志¹,古川 泰助¹, 吉田 親子¹, 山崎 裕一¹, 青木 正樹¹, 射場 義久¹, 高橋 厚¹, 角田 浩司¹, 中林 正明¹, 能代 英之¹,

畑田 明良', 吉田 幸久', 佐竹 徹也', 杉井 寿博'

Low-power Electronics Association & Project (LEAP)¹, °Y. Tsuzaki¹, T. Takenaga¹, T. Furukawa¹,

C. Yoshida¹, Y. Yamazaki¹, M. Aoki¹, Y. Iba¹, A. Takahashi¹, K. Tsunoda¹, M. Nakabayashi¹, H. Noshiro¹,

A. Hatada¹, Y. Yoshida¹, T. Satake¹ and T. Sugii¹. E-mail: tsuzaki@leap.or.jp

【研究の背景】トンネル絶縁膜およびセンシング層にそれぞれ MgO 膜と CoFeB 膜を適用した磁 気トンネル接合(magnetic tunnel junction; MTJ)は、磁気抵抗比(MR 比)が大きく^[1]、高感度・ 高精度な磁気センサとしての応用が期待されている。この際、MgO/CoFeB 界面での垂直磁気異方 性(perpendicular magnetic anisotropy; PMA)^[2]を活用し MgO 膜をキャップ層として適用すること で、ヒステリシスの発生と CoFeB 膜厚に依存した特性の変化を抑制することが可能である^[3]。し かしながら、これまでにキャップ層の MgO 膜厚がセンサ用 MTJ の特性に与える影響について、 十分な検討がなされていない。ここでは、MTJ 積層構造のベタ膜において、MgO キャップ層膜厚 が与えるセンシング層 CoFeB 膜の磁気特性への影響を評価した。

【実験方法】MTJの積層構造は、SiO₂-sub./Ta (3)/Ru (30)/Ta (10)/Ru (1)/PtMn (15)/CoFe (2.0)/Ru (0.8)/CoFeB (2.3)/MgO (1.75)/CoFeB (1.2)/MgO (*t*_{cap-MgO})/Ta (1)/Ru (30) (単位; nm) で あり、スパッタリングにより成膜した。また、真空中で275℃、1.5T、2時間のアニールを行った。膜の磁気特性の評価には 振動型磁力計を用い、膜面方向と膜面の垂直方向に磁界を印 加して測定した。膜面方向の測定では、アニール時の磁界印 加方向と同方向に磁界を印加した。

【結果】 図1には異なる $t_{cap-MgO}$ で得られる面内方向と面直 方向の *M*-*H* 曲線を示し、図2には *M*-*H* 曲線から求めたセン シング層 CoFeB 膜の面直方向の飽和磁界 $H_{s\perp}$ と面内方向の 保磁力 H_c の $t_{cap-MgO}$ 依存性を、それぞれ示す。この結果、 H_c は $t_{cap-MgO} = 0.9$ nm 付近で最小値を示し、 $t_{cap-MgO} \ge 1.1$ nm では、 ヒステリシスが発生し H_c が増加する傾向にあった。ここで、 $H_{s\perp}$ は $t_{cap-MgO} = 0.7$ nm で大きくなっており、MgO 膜が薄い場 合に CoFeB とキャップ層である MgO 膜の界面で発現する PMA の効果が小さいことを示唆している。これに対し、 $t_{cap-MgO} \ge 0.9$ nm では $H_{s\perp}$ は $t_{cap-MgO} = 0.7$ nm よりも小さく、ほ ぼ一定であり、その変化は H_c の変化と一致していない。 $t_{cap-MgO} = 0.9$ nm 付近と比較し $t_{cap-MgO} \ge 1.1$ nm では、CoFeB センシング層の膜面内方向の磁化成分における異方性の変 化が生じたものと考えられる。

以上の結果から、MgO キャップ層を適用したセンサ用 MTJ においてヒステリシスを抑制するためには、センシング

層膜厚と同様にキャップ層 MgO 膜厚の調整も必要であることを確認した。 講演では上記のベタ膜の特性とセンサ用 MTJ の特性の相関についても言及する。

【謝辞】本研究は、経済産業省とNEDOの「低炭素社会を実現する超低電圧デバイスプロジェクト」に係わる業務委託として実施した。

【参考文献】[1]S. Yuasa *et al*, J. Phys. D: Appl. Phys.40, pp.337-354, 2007., [2]S. Ikeda *et al.*, Nature Mater.9, pp.721-724, 2009., [3]T. Takenaga *et al.*, J. Appl. Phys., 115, 17E524, 2014.