レーザー誘起成長により形成された SiC(0001) 上グラフェンの雰囲気圧力依存性

Ambient Gas Pressure dependence of Graphene formation on SiC(0001) by Laser-Induced Growth

九州大学¹, N T T 物性基礎研² ⁰服部正和¹, 古川一暁², 高村真琴², 日比野浩樹², 池上浩¹

Kyushu Univ¹, NTT Basic Research Labs.², OM. Hattori¹, K. Furukawa², M. Takamura², H. Hibino² and H. Ikenoue¹

E-mail: ikenoue@ees.kyushu-u.ac.jp

1. 序論

グラフェンは炭素の sp²結合によって構成さ れた蜂の巣状の 2 次元周期構造をもつ平面状の 物質で,電気的に優れた特性を示し,トランジス タ,化学・赤外センサ[1],THz レーザー[2]など 次世代電子デバイス材料として期待されている その一方で,グラフェンは界面の相互作用によ り著しく移動度が低下することが指摘されてお り,リソグラフィー工程により生じる僅かなレ ジスト残渣やエッチング工程のプラズマダメー ジなどによる特性劣化が懸念されている.

我々は、レジスト残渣やプラズマダメージが 生じないグラフェンの微細パターニング技術と してレーザー誘起選択成長法を提案している. 本グループによるこれまでの実験で、Ar 雰囲気 にて SiC(0001)上に KrF エキシマレーザーを照射 するとレーザー照射領域にのみグラフェンが形 成されることを示してきた[3].一方、形成され たグラフェンにはレーザー照射損傷が生じてお り、さらなる高品質化が望まれる.

我々は, Ar 分圧を制御することで品質改善に 取り組んでいるのでそれらの結果を報告する.

2. 実験

用いたレーザーはギガフォトン社製エキシマレ ーザーで,波長は248 nm,パルス幅は約55 ns であった.レーザービームはXY スリットによ り形状制御され,その形状は300 μ m×300 μ m であった.SiC(0001)基板を真空槽内に設置しAr 分圧は0.5 Pa~1.0×10⁵ Pa の範囲で制御した. 照射フルエンスは1.1 J/cm²~2.0 J/cm²,照射回数 は1~30000 shots であった.

3. 結果

Fig1 は Ar 分圧 1.0×10^5 Pa 及び 500 Pa にて SiC(0001)基板にレーザーを照射した後のラマン スペクトルを示している. この時の照射回数 は、それぞれ 20000 shots 及び 10000 shots であ り、照射フルエンスはいずれも 1.2 J/cm^2 であっ た. いずれの Ar 分圧でもグラフェンの形成を示 す I_G、I_D、I_{2D}ピークが明瞭に観察されている. また、形成されたグラフェンの層数を示す I_{2D}/I_G 比は 0.75(Ar 分圧= 1.0×10^5 Pa)及び 0.51(Ar 分圧 500Pa)であり、いずれも膜厚は 2~3 層であり、 ほぼ同じ膜厚であると見積もられる. I_D/I_G比は グラフェンのダメージを反映することが知られ ており[4], Ar 分圧 1.0×10^5 Pa 及び 500Pa では $I_D/I_G = 0.77$ 及び $I_D/I_G = 0.4$ であった. これは, レ ーザー照射により同等の膜厚のグラフェンを形 成しても Ar 分圧が変化すると損傷の割合が変化 することを示している.

Table 1 は、本実験でのレーザー照射条件(フ ルエンス 1.1 J/cm²~2.0 J/cm²,照射回数 1~ 30000 shots の範囲で得られたダメージの最も少 ないグラフェンの I_D/I_G比の Ar 分圧依存性を示 している. I_{2D}/I_G比より膜厚を評価した結果、全 て 2~3 層でほぼ同じ膜厚のグラフェンが形成さ れている. Table 1 より Ar 分圧 500 Pa で I_D/I_G比 が 0.4 と最もダメージが低く抑えられることが 分かる. レーザー照射によるレーザープルーム の進展は雰囲気圧力により大きく変化すること が知られており、Ar 分圧によりアブレーション 粒子の飛散状態や再付着確率が変化し、グラフ ェン形成に影響を与えたと考えられる.機構の 詳細は現在調査中であり、結果は講演にて報告 する.

Fig.1. Raman Spectrum of Irradiated Area.

Table.1. I_D/I_G dependence of Ar Pressure $% I_{\rm D}$.

Ar pressure (Fluence)	I_D/I_G
$1.0 \times 10^5 \text{Pa}(1.2 \text{J/cm}^2)$	0.77
500 Pa (1.2 J/cm ²)	0.4
50 Pa (1.5 J/cm ²)	0.57
0.01 Pa (1.75 J/cm ²)	0.6

[1] F.Xia et al., Nature Nanotech 4, 839 (2009).

[2] V.Ryzhii et al., JAP 101, 083114 (2007).

[3]服部正和 等, 第 74 回応用物理学会秋季学術講演会, 16p, P7, 28(2013).

[4] A.C.Ferrari et al., Phys. Rev. Lett. 97,187401 (2006).