18a-A12-6

In2O3:Sn ナノ粒子の局在表面プラズモン共鳴とその近赤外応用

Localized surface plasmons in In₂O₃: Sn nanoparticles and their near-infrared applications

東大工¹,巴製作所²,関税中央分析所³,京都工繊大⁴

°松井裕章¹,古田晋也²、長谷部貴之³,蓮池紀幸⁴,田畑仁¹

The Univ. of Tokyo¹, Tomoe Works Co. Ltd.²

[°]Hiroaki Matsui¹, Shinya Furuta², Takayuki Hasebe³, Noriyuki Hasuike⁴ and Hitoshi Tabata¹

E-mail: hiroaki@ee.t.u-tokyo.ac.jp

プラズモニックマテリアルは、環境、光エネルギー及びバイオ分野まで幅広い光学応用に利用されている。近年、酸化物半導体のプラズモニックマテリアルが近赤外域で新しい光学機能を示し、その光学的性質は、従来の貴金属とは異なることが期待されている [1-3]。更に、省エネルギーな持続社会に向けて熱線遮断技術が注視され、近赤外域で選択的に高い反射性能を示すスマートウインドウの開発も要求されている。本研究は、スクリーン印刷インク等への産業化が成された In₂O₃:Sn のナノ粒子に着目し、ナノ光工学という新しい視点からの基礎研究、及びその応用展開を目的とする。本発表は、In₂O₃:Sn ナノ粒子の微小光学応答について簡単に紹介し、ナノ粒子シートの光学的性質について報告する。

In₂O₃: Sn ナノ粒子の局在表面プラズモン共鳴は、粒子内の電子 密度を制御することができ、更に、電子のキャリア輸送特性と密接に 関連している。ナノ粒子内の電子密度の増大と伴に、共鳴ピークエ ネルギーは、Mie 理論に従って近赤外域に系統的にブルーシフトす る [Fig. 1(a)]。酸化物半導体内の電子密度の増大は、イオン化不純 物散乱を引き起こし、電子移動度の低下を伴う。実際、局在表面プラ ズモン共鳴の quality factor, Q は、10²⁰ cm⁻³の高濃度ドーピング領域 において、イオン化不純物散乱に伴いMie 理論に従わず、貴金属ナ ノ粒子の光学応答では考慮されないダンピングファクターの導入が 酸化物半導体の場合には必要となる[Figs. 1(b) - 1(c)]。

図 2(a)に、上記の光学的性質を示す In₂O₃:Sn ナノ粒子から構成さ れるナノシートの近赤外・赤外域における反射光学応答を示す。層 厚の増加と伴に反射率は向上し、216 nm において約 0.55 まで達し た。更に、ナノ粒子を六方最密充填で積層させたと仮定した電磁界 (FDTD)計算から得られたスペクトル形状に類似した。In₂O₃:Sn の電 子密度(1×10²¹ cm⁻³)は、貴金属(Au: 7×10²² cm⁻³)と比べ2桁程度小 さく、ナノ粒子それ自体は完全吸収体に近い。故に、この高い反射 性能は、粒子間のナノギャップ内に生じる近接場効果に起因すること が FDTD 計算による電場分布像から考慮される。HR-SEM や HR-TEM 観察から、ナノシート内の粒子間は空間的に分離され、粒 子間距離は1-2 nm 程度と推測される。ナノ粒子の空間配列と近接 場光現象を制御することで、高い反射性能を有する熱線遮断技術へ の新しい研究開発へのアプローチを与える。

References

[1] Appl. Phys. Lett. 99, 011913 (2011).
[2] Adv. Opt. Mater. 1, 397 (2013)
[3] Appl. Phys. Lett. 104, 211903 (2014).

図 1. プラズモン共鳴(a), quality factor, Q (b)及び電子移動度(c)の電子 濃度依存性。

図 2. (a) In₂O₃:Sn ナノ粒子シートの反 射スペクトル。(b) ナノ粒子シートの HR-SEM, HR-TEM 及び FDTD 解析 による電場分布の断面像。