SOTB-FinFET へのバックバイアス印加による低ばらつき V_t可変技術

V_t-tuning technology with low variability for SOTB-FinFETs by back-biasing 産総研 ^O松川 貴, 柳 永勛, 遠藤和彦, 塚田順一, 山内洋美, 石川由紀, 大内真一, 右田真司, 森田行則, 水林 亘, 太田裕之, 昌原明植

AIST, [°]T. Matsukawa, Y.X. Liu, K. Endo, J. Tsukada, H. Yamauchi, Y. Ishikawa, S. O'uchi, S. Migita, Y. Morita, W. Mizubayashi, H. Ota, and M. Masahara

E-mail: t-matsu@aist.go.jp

【はじめに】FinFET ではチャネルへのドーピング を行うことなく短チャネル効果を有効に抑制でき るため、低ばらつきであるというメリットもある。一 方、FinFET の SoC 用途向け導入においてはマ ルチ V_t への対応が要請される。このためには、 V_t ごとにゲート仕事関数を変えるか、fin チャネル へのドーピングを行う必要がある。特にチャネル へのドーピングは、ドーピング起因 V_t ばらつきに より FinFET の低ばらつきのメリットを損なう恐れ がある[1]。これに対して、FinFET を薄い埋め込 み酸化膜を持つ SOI 基板(silicon-on-thin-BOX:

Fig.1 Cross sectional TEM of a SOI FinFET on thin BOX with amorphous TaSiN gate.

SOTB)上に作成することで、バックバイアスによる V_t 可変が可能 であることが近年報告されている[2,3]。本発表では、SOTB 上の FinFET について、バックバイアスによる V_t 可変が V_t ばらつきに与 える影響について報告する。

【FinFET 作製工程】埋め込み酸化膜厚 T_{BOX}=10 nm の(100)SOI 基板(SOTB)を用い、Fin チャネルを RIE により形成した。ゲート電 極材料としては、仕事関数ばらつきの影響が少なく、FinFET とし て最小のしきい値ばらつきが得られる[4]非晶質 TaSiN を用いた。 Fig.1 に示すように、SOTB 基板上においても Fin チャネルが良好 に形成されていることが分かる。

【電気的特性評価】 V_g - I_d 特性のバックバイアス(V_b)依存性を Fig.2 に示す。負の V_b 印加により V_t が増加する様子が分かる。 V_b に対 する V_t の変化率(γ)を、様々な fin 厚さ(T_{fin})について調べた(Fig.3)。 変化率γはほぼ T_{fin} に比例して変化するため、ラインエッジラフネ ス等により T_{fin} がばらつきと、 γ もその影響を受けると考えられる。 T_{fin} -30nm の条件における V_t ばらつきを測定し、得られた A_{Vt} 値と バックバイアスによる V_t 変化との関係を Fig.3 に示す。合わせて、 fin チャネルへのドーピングによる V_t 変化と A_{Vt} の関係[1]と比較す る。 V_b による V_t 変化ともに A_{Vt} 値はわずかに増加するが、チャネ ルドーピングによる A_{Vt} 劣化に比べれると無視できる程度である。 これより、SOTB-FinFET へのバックバイアス印加による V_t 制御は、 SoC 向けマルチ V_t の実現のための有効な方法の1つと言える。 【参考文献】[1] C.-H. Lin *et al.*, VLSI2012, 15. [2] M. Saitoh *et al.*, VLSI2012, 11, [3] K. Endo *et al.*, 2012 SOI Conf., 44. [4] T. Matsukawa *et al.*, IEDM2012, 175.

Fig.2 Shift of V_g -I_d curves of the SOTB FinFET by back bias V_b. Negative V_b increases V_t of the nMOS FinFET effectively.

Fig.3 Influence of fin thickness (T_{fin}) variation on the body-effect factor γ . The γ value linearly increases with T_{fin} . Namely, dimensional fluctuation in T_{fin} results in fluctuation of γ .

Fig.4 Degradation of A_{Vt} value by back-biasing for V_t tuning, and benchmarking with the case of fin-channel doping [1]. Degradation of A_{Vt} with V_b is negligibly small in comparison to that for the doping technology.