18a-A17-12

Photoelectrochemical CO₂ reduction on 3C-SiC photo-anode

^oJun Tae Song¹, Shunnosuke Akabane¹, Renato Goes Amici¹, Takayuki Iwasaki¹ and Mutsuko Hatano¹

¹ Department of Physical Electronics, Tokyo Institute of Technology. Green Hills Bldg. #1 4F, 2-12-1 Ookayama, Tokyo 152-8552, Japan Phone: +81-3-5734-3999 E-mail: hatano.m.ab@m.titech.ac.jp

1. Introduction Many investigations have been attempted for establishing the CO_2 conversion system, because CO_2 is considered as greenhouse gas and an energy resource for useful chemical energy such as formic acid (HCOOH) and methanol (CH₃OH) [1]. Since TiO₂ photo-electrode for water-splitting was demonstrated, electrochemical CO_2 reduction with inorganic photo-electrode has been regarded as a promising method. For this system, the material of photo-electrode must have band-structure for CO_2 reduction potential. As one of candidates, 3C (Cubic) type SiC has an appropriate band-gap, 2.2 eV for significant solar-light absorption and the sufficient band-edge level for CO_2 reduction [2]. Despite of its potential, most researches for SiC photo-electrode has been focused on water-splitting. Herein, we demonstrated the electrochemical CO_2 reduction system with n-type 3C-SiC photo-electrode.

2. Experiments n-type 3C-SiC (N doping density: 1.0×10^{16} cm⁻³) grown by low pressure vapor deposition (LPCVD) was used as a photo-anode. An aluminum (Al) layer 200 nm in thickness was deposited on backside for ohmic contact. Photoe-lectrochemcal (PEC) cell contains 0.1 M NaOH (pH = 13.6) and 0.1 M KHCO₃ (pH = 8.5) electrolytes in anode and cathode sides separately with ion exchange membrane. As a counter electrode, a Pt wire was utilized. A 500 W Xe lamp which has characteristic of solar-light spectrum was implemented for light illumination. As a process of the gas analysis, N₂ gas was injected first for 10 min to purge the inside and CO₂ gas was bubbled to only cathode part for 30 min. Then, PEC cell was sealed immediately after finishing the CO₂ bubbling. After the PEC reaction at the applied bias of -0.8 V (vs. counter electrode) for designated time, collected gases were analyzed by real-time monitoring gas-chromatography that we have established.

3. Results and discussion

CH₄ and CO gases are successfully generated as the products of CO₂ reduction with 3C-SiC photo-anode. The products were analyzed with different flowed charge amounts, 0.04, 0.09, 0.11, and 0.26 C. In Fig. 1, it is shown that H₂ production increases linearly with regards to charge amount. Figure 2 shows the CO and CH₄ gases are produced after PEC reaction. CO and CH₄ gases increase to ~ 0.003 and ~ 0.001 µmol at 0.09 C. However, the amount of products diminishes to ~ 0.002 and ~ 0.0008 µmol for CO and CH₄, respectively at 0.26 C. It means that no CO₂ reduction occurs after ~ 0.1 C. Although CO₂ reduction proceeds in the early phase of the reaction (< 0.1 C), it is suppressed after 0.1 C due to high adsorption property of hydrogen ion on Pt electrode [3]. In conclusion, these results demonstrate possibility of CO₂ reduction with 3C-SiC, but it is necessary to reduce H₂ generation and improve the CO₂ conversion rate with different counter electrode.

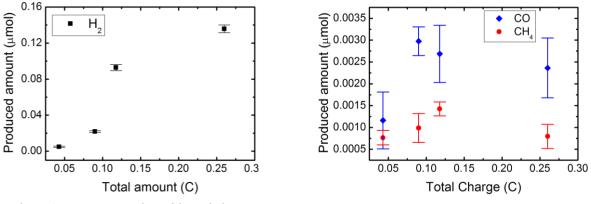


Figure 1. H₂ gas generation with total charge.

Figure 2. Gas production by CO₂ reduction.

Acknowledgement This work was supported by Yazaki Memorial Foundation for Science and Technology.

References

- [1] H. Hashiba et al., Appl. Phys. Express 6 (2013) 097102.
- [2] J. T. Song et al., Appl. Phys. Lett. 103 (2013) 213901.

[3] A. G. Munoz, Photoelectrochemical Solar Conversion System (CRC Press, New York, 2013) p.231.