
Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers

Y. Zhang¹, K. Shibata¹, N. Nagai¹, C. Ndebeka-Bandou^{1,3}, G. Bastard^{1,3}, and K. Hirakawa^{1,2} ¹IIS, ²INQIE, University of Tokyo, ³LPA, Ecole Normale Superieure E-mail: zhangya@iis.u-tokyo.ac.jp

We have investigated intersublevel transitions in single self-assembled InAs quantum dots (QDs) by using a single electron transistor geometry that consists of a QD and nanogap metal electrodes as a terahertz detector. Fig. 1 shows Coulomb stability diagram and measured photocurrent for two QD samples. Photocurrent distribution with respect to the Coulomb diamonds indicates that there are two mechanisms for the photocurrent generation: $N \leftrightarrow N-1$ photoexcitation process and $N \leftrightarrow N+1$ photoexcitation process. Fig. 2 shows the photocurrent spectra measured at various V_G . When the p shell is fully occupied (N = 6), we observed rather simple photocurrent spectra induced by the p \rightarrow d-2s shell intersublevel transitions. The intensity change of the photocurrent peaks with V_G qualitatively agrees with the numerical calculation that takes into account the electron-electron Coulomb repulsion. When the p shell is half filled (N = 4), however, the photocurrent spectra exhibited rather complicated behavior as a function the gate voltage, most likely due to the fluctuation in the electron configuration when the empty p state is filled back from the electrode.

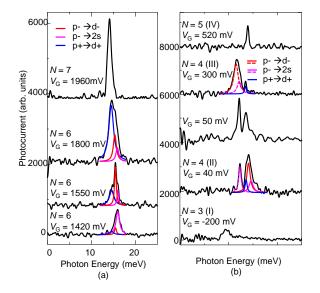


Fig.1 (a) SEM images of a QD SET with a bowtie antenna structure. (b) Coulomb stability diagram of sample A. (c) THz-induced photocurrent as a function of $V_{\rm G}$ measured on sample A. (d) Coulomb stability diagram of sample B. (e) THz-induced photocurrent as a function of $V_{\rm G}$ measured on sample B. (f) Photocurrent mapping measured in the N =6 Coulomb diamond for sample B.

Fig.2 (a) Photocurrent spectra measured at various V_G on sample B for N = 6. Three possible transitions, *i.e.*, p. \rightarrow d., p. \rightarrow 2s, and p₊ \rightarrow d₊, are indicated by red, pink, and blue arrows, respectively. (b) Photocurrent spectra measured at various V_G on sample B for N = 3,4,5.