18a-A28-7

InGaP/GaAs/Ge 3 接合太陽電池のサブセルの内部発光量子収率評価と エネルギー変換効率への影響

Analysis of Internal-luminescence-quantum-yield of Subcells in InGaP/GaAs/Ge triple-junction solar cells and their influence on energy conversion efficiencies ⁰朱琳¹,陳少強¹,吉田正裕¹,望月敏光¹,金昌秀¹,秋山英文¹,今泉充²,金光義彦³ ISSP, Univ. of Tokyo¹, JAXA², ICR, Kyoto Univ.³

E-mail: zhulin@issp.u-tokyo.ac.jp

The ideal conversion efficiency limit of multi-junction (MJ) tandem solar cell (η_{sc}) had been theoretically formulated as an efficiency reference via detailed balance principle [1]. In order to provide a reliable reference for the realistic design, in our previous works, we had theoretically analyzed the dependence of η_{sc} and the optimized sub-cell band-gap energies on the geometric mean (y_{int}^*) of the individual sub-cell internal luminescence quantum yield (y_{int}), which characterizes material quality of each sub-cell in a tandem structure [2]. Recently, we have developed a useful method for diagnosing MJ tandem solar cells based on the measurements of the absolute electroluminescence (EL) quantum yields (y_{ext}^{LED}) of individual sub-cells and the evaluation of the external luminescence yields (y_{ext}) [3, 4].

In this work, we extend our analysis method and quantify y_{int} from the measured y_{ext} to investigate the influence of material quality of each sub-cell on η_{sc} . Fig. 1(a) shows quantified y_{int} of three sub-cells and their y_{int}^* of a space InGaP/GaAs/Ge 3-junction tandem solar cell as a function of the injection current in LED (a) The current desity of LED operation $\int^{ED} [mA/cm^2]$ 5 10 15 (J^{LED}) and solar-cells (J^{SC}) operations, which are strongly 10⁰ dependent on the current density. The y_{int} of top-, middle-, Mid @SC Mid @I FD 10 bottom-cells and y_{int}^* at $J^{SC} = J_m$ (maximum-power condition) Top @SC Top @LED **y** int @SC yint @LED 10⁻² are 1.4, 5.6, 0.3, and 1.2%, respectively, while those at $J^{SC} = 0$ (open-circuit condition) are 4.9, 55.9, 3.2, and 4.4%, respectively. 10^{-3} Bot @LED-Bot @SC We also evaluated η_{sc} from the quantified y_{int}^{*} at J_{m} (the 10 $J_{m} - 15$ -10 -5 pink cross) and compare it with the theoretical estimation of η_{sc} The current desity of SC operation J^{sc} [mA/cm²] for two typical y_{int}^{*} cases, shown as Fig. 1 (b), showing a good (b) 36 $y_{int}^* @J_m$ int1=1.4%(top) 34 Efficiency [%] agreement with conclusions of our previous work [2]. The /_{int2}=5.6%(mid) 32 (jot3=0.3%(bot) maximum η_{sc} of 28.7% was obtained at $y_{int}^* = 1.2\%$ and J_m 30 28 =-16.6 mA/cm², which is close to the experimental η_{sc} of 27.4%. y_{int2}=y_{int3}=1 26 int1=yint2=yint3 It reveals that this experimental method to quantify each sub-cell 0.001 0.01 0.1 y_{int} is feasible and reliable. **Y**int

Fig. 1 (a) Quantifed y_{int} as a function of the injection current in LED and SC operations. (b) η_{sc} as functions of y_{int}^* [1] A. D. Vos, J. Phys. D: Appl. Phys.13, 839 (1980). [2] L. Zhu et al., 40th IEEE PVSC Proceedings, Denver, USA, 2014. [3] S. Chen et al., 40th IEEE PVSC Proceedings, Denver, USA, 2014. [4] M. Yoshita et al., this JSAP 2014 fall Meeting.