Hydrogenated-diamond logic inverter fabrication with enhancement-mode metal-insulator-semiconductor field effect transistor

J. W. Liu,¹ M. Y. Liao,² M. Imura,² and Y. Koide^{2,3,4}

¹International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS)

²Optical and Electronic Materials Unit, NIMS ³Nanofabrication Platform, NIMS

⁴Center of Materials Research for Low Carbon Emission, NIMS

E-mail: liu.jiangwei@nims.go.jp

Since diamond has some excellent intrinsic properties such as a wide band gap, a high thermal conductivity, a high hole mobility, and a large breakdown field, it is considered to be a promising material for the fabrication of high-power and high-frequency electronic devices. Most of diamond-based field effect transistors (FETs) have been fabricated on the H-diamond epitaxial layers, which accumulate two-dimensional hole gases on the surface with sheet hole density and hole mobility of $\sim 10^{14}$ cm⁻² and ~ 100 cm²·V⁻¹·s⁻¹, respectively.

Recently, an increasing interest has been focused on the fabrication of H-diamond-based metal-insulator-semiconductor FETs (MISFETs). Due to the existence of gate insulators, the leakage current and the breakdown voltage of the MISFETs are improved compared with those of the metal-semiconductor FETs (MESFETs). In our previous studies,^{1.2} electrical properties of high-k/H-diamond MISFETs have been investigated. The high-*k* insulators have bilayer structures, which are formed by radio-frequency sputtering deposition (RF-SD) and atomic layer deposition (ALD) techniques. The ALD-insulators in the SD/ALD bilayer structures impact as buffer layers to prevent the H-diamond surface from plasma discharge damage during the deposition of SD-insulators. Both SD-HfO₂/ALD-HfO₂/H-diamond and SD-LaAlO₃/ALD-Al₂O₃/H-diamond MISFETs showed good operations and normally-off (enhancement-mode) characteristics. In particular, there was a quite low leakage current density (10⁻⁸ A·cm⁻²) for the SD-LaAlO₃/ALD-Al₂O₃/H-diamond. Thus, it is promising to fabricate high-performance H-diamond-based logic inverters using the enhancement-mode SD-LaAlO₃/ALD-Al₂O₃/H-diamond MISFETs.

In this study, the H-diamond-based logic inverters with the enhancement-mode $SD-LaAlO_3/ALD-Al_2O_3/H$ -diamond MISFET will be fabricated and characterized. The voltage transfer characteristics of them with the different load resistors will be discussed.

References

- 1. J. W. Liu, M. Y. Liao, M. Imura, and Y. Koide, Appl. Phys. Lett. 103, 092905 (2013).
- J. W. Liu, M. Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, J. Appl. Phys. 114, 084108 (2013).