18a-PA2-9

サイズ制御炭酸カルシウム化合物による血液凝固特性 Blood coagulability characteristics of size controlled calcium carbonate composite

慶大院理工¹,国立江陵原州大学²,⁰朴駿容¹,慶奎弘¹,金世勳²,白鳥世明¹ Grad. Sch. Sci. Tech., Keio Univ.¹, Dep. Adv. Ceramic material. Eng., Gangneung-Wonju Univ.² ⁰Jun-Yong Park¹, Kyu-Hong Kyung¹, Sae-Hoon Kim², Seimei Shiratori¹

E-mail: shiratori@appi.keio.ac.jp, junyong@a6.keio.jp

Some researchers have investigated that calcium ions are required for blood coagulations. Calcium ions participated in hemostatic phase and accelerated forming of blood clot. It has a role conversion of prothrombin to thrombin. Thrombin acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, as well as catalyzing many other coagulation-related reactions. Fibrin forms blood clot.

In this study, we focused on calcium carbonate and helpful materials for blood coagulations. However, natural cuttlefish bone is hard to control its particle size. Therefore, in order to control the size and surface structure, we synthesized artificial calcium carbonate with using sodium alginate and β -chitosan as the enhancement materials for blood coagulations. To improve specific surface area, using by dimethyl carbonate (DMC) and calcium chloride (CaCl₂), we synthesized smaller CaCO₃ than ordinary CaCO₃. And then, sodium alginate and β -chitosan are coated alternately on the prepared calcium carbonate by layer-by-layer self-assembly method. Due to its high biocompatibility, β -chitosan has been employed in wound healing management and drug delivery system. And alginate has also wound healing property. SEM image of CaCO₃ is shown in Figure 1. As shown in the figure 1. Size controlled CaCO₃ was 4times smaller than that of ordinary CaCO₃. Size controlled CaCO₃ has big specific surface area. The composite calcium carbonate was also characterized by XRD, UV-vis Spectrophotometer for blood coagulability. As the result, it was found that the composite calcium carbonate has effect on blood coagulability.

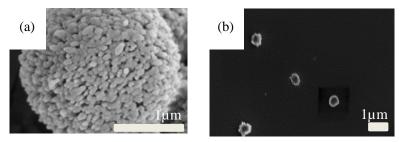


Figure 1. FE-SEM image (a) Ordinary CaCO₃, (b) Size controlled CaCO₃ References: [1] A. B. G. Lansdown, Wound Repair Regen, 10 (2002) 271-285

[2] A. Cai, X. Xu, H. Pan, J. Tao, R. Liu, R. Tang, K. Cho J. Phys. Chem. C 112 (2008) 11324-11330