Study the valley polarization in monolayer WSe$_2$ by polarization-resolved photoluminescence spectroscopy

○Lizhong Zhou1, Yuhei Miyauchi1,2,3, Shinichiro Mouri1, Weiwei Zhao4, Minglin Toh4, Goki Eda4 and Kazunari Matsuda1

1Institute of Advanced Energy, Kyoto University
2Japan Science and Technology Agency, PRESTO
3Grad. Sch. Sci. Nagoya University
4Department of Physics, National University of Singapore

E-mail: zhou.lizhong.46a@st.kyoto-u.ac.jp

Atomically-thin transition metal dichalcogenides (TMDs) such as MoS$_2$ and WSe$_2$ have attracted much attention as novel 2D semiconductors with remarkable physical properties and applications[1-4]. The monolayers of the TMDs are non-centrosymmetric materials with a direct band-gap located at the energy-degenerate K and K’ valleys in momentum space. The structural inversion asymmetry in the 1L(mono-layer)-TMDs gives rise to coupling of electron spin and valley degree of freedom; this characteristic enables valley-selective optical excitation using circular-polarized incident photons [1]. Therefore, the 1L-TMDs are promising materials for “Valleytronics”, future optoelectronics technology using valley degree of freedom of electrons.

Here we study temperature dependence of polarized photoluminescence (PL) in 1L-WSe$_2$ [2] to understand spin-valley relaxation mechanism between the degenerate K and K’ valleys. In the experiment, circular polarization of the incident photons was set to be σ^+ polarization (corresponding to selective excitation of K’ valley), and σ^+ and σ^- components of the PL signals were separately detected. Figure 1 shows the polarization-resolved PL spectra at 15 K and the peaks of exciton, trion1, and trion2 are labeled respectively. The PL intensity of the σ^+ emission is larger than that of σ^- emission under the σ^+ excitation condition, suggesting spin-valley polarization in 1L-WSe$_2$ at 15 K. Temperature dependence of the observed valley polarization and its mechanism will be discussed.