Amorphous silicon solar cells fabricated on high-quality LPCVD SnO2:F/textured glass

Department of Physical Electronics¹, Photovoltaic Research Center (PVREC)³,

Tokyo Institute of Technology.

Research Center, Asahi Glass Co., Ltd²,

Amartya Chowdhury¹*, Masanobu Isshiki², Takuji Oyama², Hidefumi Odaka²,

Porponth Sichanugrist¹ and Makoto Konagai^{1, 3}

* E-Mail: chowdhury.a.aa@m.titech.ac.jp

<u>Introduction</u> We have already reported¹ the superior properties of LPCVD SnO₂:F films coated on textured glass substrates and the performance of micro-crystalline silicon cells fabricated on them. Here we will report about how a-Si solar cells work on these substrates before they are applied to multi-junction type solar cells.

<u>Experiment</u> Glass substrates were macro-textured at different level using CF₄ plasma Reactive Ion Etching Method (RIE) and were coated with LPCVD SnO₂:F films. Solar cells with structure of Glass/SnO₂:F /p-SiC:H /a-Si:H /n-SiO_x:H/Ag/Al were deposited on these substrates. For comparison, one cell was also deposited on double textured ZnO:B (W-ZnO) coated glass substrate².

<u>Results and discussion</u> RMS roughness of the SnO₂:F substrates varies in the range of 147 to 335 nm and increases as RIE chamber pressure increases. Maximum initial efficiency of 9.91% is obtained using a substrate with RMS roughness 223 nm. Cell efficiency tends to increase with increase in roughness of SnO₂:F substrate, but fill factor (FF) reduces drastically as the RMS roughness increases over 250 nm.

Substrate	\mathbf{J}_{sc}	V_{oc}	FF	η	J _{sc} @ QE 300-550
	(mA/cm ²)	(V)		(%)	nm (mA/cm ²)
ZnO:B	16.12	0.905	0.725	10.57	7.19
SnO2:F	15.27	0.926	0.701	9.91	7.29

Table 1. Cell performance for developed SnO₂:F and W-ZnO substrates.

Table 1 shows, although W-ZnO substrate produces superior cell efficiency (η), but due to its total absorption of 300-380 nm wavelength range, SnO₂:F substrates produces better short circuit current density (J_{sc}) in 300-550 nm operating wavelength range. This is a prerequisite for a front cell of a multi-junction cell. Overall, performance of this newly developed SnO₂:F substrate is promising for the application in multi-junction solar cell.

<u>Acknowledgement</u> This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade and Industry (METI), Japan.

- 1. M. Isshiki, et at, presented at PVSEC-23, October 23-November 1, 2013, Taiwan.
- 2. A. Tamang, et al, IEEE Journal of Photovoltaics, vol. 4, no. 1, January 2014