Electronic conductivity of impurity-doped Zn₃N₂ thin films Chubu Univ. °X. Cao, K. Watarai, Y. Ninomiya, A. Sato, N. Yamada

E-mail: jscaoxiang@126.com

INTRODUCTION: Zn₃N₂ is an n-type nitride semiconductor. It has a relatively wide band-gap value of 3.26~2.30 eV [1] and a small electron effective mass of ~0.3 m_0 (m_0 denotes free electron mass). Therefore, Zn₃N₂ is expected to be a transparent conductor with excellent conductivity. We have investigated electrical and optical properties of undoped Zn₃N₂ polycrystalline films fabricated by sputtering. Nitrogen-deficient Zn₃N_{2- δ} films showed low resistivities (ρ) of the order of 10⁻³ Ω cm [2]. To establish Zn₃N₂ as a transparent conductor, further reduction of ρ is still needed. One way to reduce ρ is impurity-doping. Thus, we have tried impurity doping into Zn₃N₂. We found that oxygen is one of effective dopants to suppress ρ .

EXPERIMENTS: Oxygen-doped Zn₃N₂ thin films were deposited on glass substrates heated at 200 °C by reactive RF magnetron sputtering method using a metal Zn target. Film deposition was conducted in a mixture gas of Ar, N₂, and O₂ with various flow ratios of $f(O_2) = O_2 / (Ar + N_2 + O_2)$ ranging from 0.0% to 0.5% at 0.1% interval. Meanwhile, $f(N_2) = N_2 / (Ar + N_2 + O_2)$ was kept fixed at 80%.

RESULTS & DISCUSSION: X-ray diffraction (XRD) patterns shown in Fig. 1 indicate that all the films were phase-pure Zn₃N₂ polycrystalline films. Fig. 2 displays ρ , carrier density (n_e) and Hall mobility (μ_H) as functions of $f(O_2)$. The minimum ρ value of $6.2 \times 10^{-4} \Omega$ cm was obtained at $f(O_2)=0.2\%$, where n_e reached the maximum value of 1.2×10^{20} cm⁻³. From these results, we inferred that oxygen acts as an effective electron donor in the Zn₃N₂ films. As $f(O_2)$ increased from 0.2% to 0.5%, ρ increased as a result of a reduction of n_e . The n_e reduction is probably due to the degradation of crystallinity as shown in Fig. 1. It should be noted that oxygen-doped Zn₃N₂ films have μ_H values larger than 60 cm² V⁻¹ s⁻¹. These values are 1.5 times larger than those of conventional transparent conductors like Sn-doped In₂O₃. Therefore, oxygen-doped Zn₃N₂ can be a high-mobility transparent conductor.

Fig.1 XRD patterns of Zn_3N_2 films deposited at various $f(O_2)$.

Fig.2 Plots of ρ , n_e , and μ_H as function of $f(O_2)$.

REFERENCES

18p-A11-2

[1] Futsuhara et al., Thin Solid Films. 317, 322 (1998).

[2] Yamada et al., Jpn. J. Appl. Phys. 53, 05FX01 (2014).