Electronic conductivity of impurity-doped Zn$_3$N$_2$ thin films

Chubu Univ. X. Cao, K. Watarai, Y. Ninomiya, A. Sato, N. Yamada

E-mail: jscaoxiang@126.com

INTRODUCTION: Zn$_3$N$_2$ is an n-type nitride semiconductor. It has a relatively wide band-gap value of 3.26–2.30 eV [1] and a small electron effective mass of ~0.3m$_0$ (m_0 denotes free electron mass). Therefore, Zn$_3$N$_2$ is expected to be a transparent conductor with excellent conductivity. We have investigated electrical and optical properties of undoped Zn$_3$N$_2$ polycrystalline films fabricated by sputtering. Nitrogen-deficient Zn$_{3-x}$N$_2$ films showed low resistivities (ρ) of the order of 10$^{-3}$ Ω cm [2]. To establish Zn$_3$N$_2$ as a transparent conductor, further reduction of ρ is still needed. One way to reduce ρ is impurity-doping. Thus, we have tried impurity doping into Zn$_3$N$_2$. We found that oxygen is one of effective dopants to suppress ρ.

EXPERIMENTS: Oxygen-doped Zn$_3$N$_2$ thin films were deposited on glass substrates heated at 200 °C by reactive RF magnetron sputtering method using a metal Zn target. Film deposition was conducted in a mixture gas of Ar, N$_2$, and O$_2$ with various flow ratios of f(O$_2$) = O$_2$ / (Ar + N$_2$+ O$_2$) ranging from 0.0% to 0.5% at 0.1% interval. Meanwhile, f(N$_2$) = N$_2$ / (Ar + N$_2$+ O$_2$) was kept fixed at 80%.

RESULTS & DISCUSSION: X-ray diffraction (XRD) patterns shown in Fig. 1 indicate that all the films were phase-pure Zn$_3$N$_2$ polycrystalline films. Fig. 2 displays ρ, carrier density (n_c) and Hall mobility (μ_H) as functions of f(O$_2$). The minimum ρ value of 6.2×10$^{-4}$ Ω cm was obtained at f(O$_2$)=0.2%, where n_c reached the maximum value of 1.2×1020 cm$^{-3}$. From these results, we inferred that oxygen acts as an effective electron donor in the Zn$_3$N$_2$ films. As f(O$_2$) increased from 0.2% to 0.5%, ρ increased as a result of a reduction of n_c. The n_c reduction is probably due to the degradation of crystallinity as shown in Fig. 1. It should be noted that oxygen-doped Zn$_3$N$_2$ films have μ_H values larger than 60 cm2 V$^{-1}$ s$^{-1}$. These values are 1.5 times larger than those of conventional transparent conductors like Sn-doped In$_2$O$_3$. Therefore, oxygen-doped Zn$_3$N$_2$ can be a high-mobility transparent conductor.

REFERENCES
