Effect of oxidation process on MoS₂ thin film growth Sinae Heo^{1, 2}, Ryoma Hayakawa¹, Toyohiro Chikyow¹, Yutaka Wakayama^{1, 2} NIMS¹, Kyusyu University² E-mail: HEO.Sinae@nims.go.jp

[Introduction] MoS₂ have received considerable attention because of unique potential, such as controllable band-gap and high carrier mobility. Although significant efforts have been devoted to prepare MoS₂ thin film, technique to grow large and flat MoS₂ thin film is rare until now. A main purpose of this study is to explore a growth process of MoS₂ films in large area. For this purpose, a three-step procedure was investigated. Here, MoS₂ thin films were prepared through MoO₃ deposition, thermal annealing for oxidation and crystallization and sulfurization by CVD. Morphology and crystallinity were examined by XRD, AFM and Raman spectroscopy.

[Experimental] MoO₃ powder was thermally evaporated in vacuum to form MoO_{3-x} thin film on a SiO₂/Si substrate. Subsequently, the film was thermally annealed at 400 °C in O₂ atmosphere for oxidation and crystallization. The MoO₃ film thus prepared was placed in a glass tube together with sulfur powder. Reaction between MoO₃ film and sulfur powder was induced instantaneously at 500 °C for 15 min, where the atmosphere in the tube was kept at 11kPa of N₂ gas. [Results and Discussion] XRD patterns measured at each step are shown in Fig. 1. The oxidation process converted amorphous MoO_{3-x} into crystalline MoO₃ with layered structure. After sulfurization, diffraction peaks from MoS2 was clearly observed. Raman spectrum in Fig. 2 shows E_{2g}^{1} and A_{1g} peaks to confirm successful growth of MoS₂ films. Fig. 3 shows XRD patterns measured from MoS₂ films fabricated with and without oxidation process. The oxidation process yielded an intensive diffraction peak from (002) MoS₂ lattice plane, emphasizing advantage of oxidation process. Uniformity of the MoS₂ films was confirmed over 12mm x 8mm size substrate. From these results, it can be concluded that three-step CVD technique is promising for growing MoS₂ film in large area.

In this study, the 15nm-thick MoO_{3-x} film was initially deposited to enable XRD measurements. The final thickness of the MoS_2 film was 17 nm, which corresponds to 22 monolayers. Next plan is to decrease the thickness and refine the growth conditions for producing single layer MoS_2 .

Fig. 1. XRD patterns measured after each process.

Fig. 2. Raman spectrum obtained from MoS_2 thin film.

Fig. 3. XRD patterns obtained from MoS_2 films with and without oxidation process.