スピンコート法で作製した IGZO 薄膜の特性に与える焼成温度と時間の影響

Effects of Sintering Temperature and Time on Properties of Spin-coated IGZO Thin-films 早大先進理エ¹および材研², 産総研 FLEC³, ^O陳東京¹, 森本貴明¹, 福田伸子³, 大木義路^{1, 2} SASE¹ and RIMST², Waseda Univ., FLEC, AIST³, ^OD. Chen¹, T. Morimoto¹, N. Fukuda³, Y. Ohki^{1, 2}

E-mail: tokyo-perfect@fuji.waseda.jp

[はじめに] 表示デバイス駆動用半導体として近年実用化された In-Ga-Zn-O(IGZO)半導体膜は、主にスパッタ法で作製されている。 今回低コストなスピンコート法で作製したので報告する。

1 In-plane XRD patterns of Fig. 1 In-plane XKD patterns of IGZO films sintered at 800°C for 2 hours (a), 800°C for 5 minutes (b), 400° C for 2 hours (c), 400° C for 5 minutes (d), 300° C for 2 hours (e), and 300° C for 5 minutes (f).

Fig. 2 PL spectra measured at 10 K for IGZO films sintered at 800°C for 2 hours (a), 800°C for 5 minutes (b), 300°C for 2 hours (e), and 300°C for 5 minutes (f), induced by 6.0-eV photons.

Fig. 3 Transfer characteristics of TFTs using IGZO films sintered at 800°C for 2 hours (a), 400°C for 2 hours (c), and 300°C for 2 hours (e), measured at a constant $V_{\rm D}$ of 40 V.

Table 1 Summary of the results				
Temperature [°C]	Time [min]	XRD peak	PL	Saturation mobility [cm ² V ⁻¹ s ⁻¹]
300	5 120	No peak	Does not appear	
400	5	No peak	Not	8.8x10 ⁻³
400	120	No peak	measured	8.1x10 ⁻³
800	5	Broad peak Sharp peak	Appears	$1.7 \text{x} 10^{-1}$
	120			6.6x10 ⁻¹

[試料作製] In, Ga, Zn の硝酸塩とアルコールアミンなどから成るペ ースト状の IGZO 前駆体ゾル(In:Ga:Zn=6:1:3)をスピンコート法で a-SiO₂膜付きの Si 基板に塗布し、酸素中で焼成した。焼成温度を 300、400、800℃のいずれか、焼成時間を5分間と2時間のいずれ かとし、温度と時間の影響を評価した。

[実験結果] IGZO 薄膜の In-plane XRD パターンを図1 に示す。800°C 焼成膜のみに回折ピークが現れ、結晶化していることがわかる。 また、800℃で2時間焼成した膜は5分間焼成した膜よりも鋭いピ ークが見られる事より、結晶化が進んでいると考えられる。次に、 6.0eV の励起光を与えた時の PL スペクトルを図 2 に示す。800℃ 焼成膜では 2.1eV 付近に PL が現れる。一方、300℃ の焼成膜では PLは現れない。さらに、40Vのドレイン電圧を与えた時の伝達特 性を図3に示す。400℃ あるいは800℃ で焼成した膜で作ったトラ ンジスタは、On-off 電流比が 10⁷程度の On-off 動作を示すが、300℃ での焼成では On-off 動作を示さない。

XRD、PLの結果と伝達特性から計算した飽和移動度を表1に纏 める。400℃ 焼成によるアモルファス膜と比較して、800℃ 焼成に より結晶化した膜の方が移動度が高い。また、2時間の焼成により 結晶化が進むと、移動度はさらに向上する。よって、IGZO の結晶 化は高移動度化に有利といえる。

[考察] IGZO の組成に近い In₂O₃と ZnO では酸素空孔に起因する PL がそれぞれ 2.1eV と 2.2eV に生じる^[1,2]。よって、2.1eV に PL を生 じる800°C焼成膜には酸素空孔が存在する可能性が高い。一般に、 金属酸化物半導体において酸素空孔はドナーとして働く^[3, 4]ため、 800°C 焼成膜を使ったトランジスタにおいて On-off 動作が可能と

なると考えられる。

これらを踏まえると、現時点での知見としては、良質な膜の作成

には、800°C2時間の焼成が有利である。

- [1] M. Kumar et al.: Appl. Phys. 92, 171907 (2008).
- [2] J. D. Ye *et al.*: Appl. Phys. A 81, 759–762 (2005).
 [3] A. Sawa: Mater. Today 11, 29-36 (2008).
- [4] P. A. Cox: The Electronic Structure and Chemistry of Solids (Oxford University Press, New York, 1987) p. 215.

[[]文献]