DLTS 法による窒化後酸化 SiC-MOSFET の界面準位評価

DLTS Study of SiC-MOSFET Interface Traps Following Oxidation After Nitridation 東京工業大学¹,三菱電機先端総研² ○ 長谷川淳一¹,須藤建瑠¹,岩崎孝之¹,小寺哲夫¹,

古橋壮之 2 ,野口宗隆 2 ,中田修平 2 ,西村 正 1 ,波多野睦子 1

Tokyo Institute of Technology¹, Mitsubishi Electric Corp. Advanced Technology R&D Center.²

^OJunichi Hasegawa¹, Takeru Suto¹, Takayuki Iwasaki¹, Tetsuo Kodera¹, Masayuki Furuhashi²,

Munetaka Noguchi², Shuhei Nakata², Tadashi Nishimura¹, Mutsuko Hatano¹

E-mail: hasegawa.j.ad@m.titech.ac.jp

SiC-MOSFET のしきい値電圧 V_{th} は、雑音等による誤点狐を防ぐため大きくする必要がある。従来のチャネル濃度による V_{th} 制御では移動度が低下するという問題があったが、ゲート酸化膜の窒化後にウェット酸化を行うことにより、移動度の低下を回避して V_{th} を正にシフトできる事が分かった $^{[1]}$ 。本研究では、酸化膜形成後の窒化および窒化後のウェット酸化が SiC-MOSFET の界面準位に与える影響を、浅い準位から深い準位まで精度良く測定できる DLTS(Deep Level Transient Spectroscopy) 法によって調べた。

Si 面 n チャネル 4H-SiC $MOSFET(L/W=10/100 \mu m)$ において、高温ドライ酸化によるゲート酸 化膜形成、酸化膜形成後の NO アニールによる窒化、窒化後の 800, 900 °C ウェット酸化を行った 4 サンプルを評価した。図1 に I_dV_g 特性を、図2 に V_g に対する電界効果移動度 μ_{fe} の変化を示す $(V_d=0.1 \text{ V})$ 。 窒化によって S 値は 0.3 倍、 μ_{fe} は 8.7 倍に向上した。 窒化後の 800 °C ウェット酸化に より、S 値と μ_{fe} の低下を抑制しつつ V_{th} を正に $0.75~\rm V$ シフトさせることができた。 $900~\rm ^{\circ}C$ ウェッ ト酸化では窒化後に比べ V_{th} は正に 4.0 V シフトした一方、S 値は 1.5 倍、 μ_{fe} は 0.65 倍に低下した。 図 3 に FET と同じ条件で作製した n 型キャパシタを用いて時定数 τ =0.3 s の DLTS 信号を測定 し、界面準位密度 D_{it} を算出した結果を示す。逆バイアスは空乏層幅が約 $300~\mathrm{nm}$ になる電圧とし、 パルス印加時のバイアスはフラットバンド電圧 V_{fb} より+2 V 酸化膜側に印加した。エネルギーレ ベルは測定温度から、 D_{it} は $1/C(t)^2$ の時間微分から算出した。図 3 より、 D_{it} は窒化によって約 0.25 倍に低減している。窒化によって移動度と S 値が向上する要因と考えられる。窒化後の 800 $^{\circ}$ C ウェット酸化では、窒化サンプルと比較して D_{it} は増加しているが、 $0.3~\mathrm{eV}$ を境に浅い準位と深 い準位で増加の程度に違いが見られる。移動度が低下せず V,,, が正シフトする一因であると考えら れるが、定量的な検討も含めて今後明らかにしていく。900°Cウェット酸化では、窒化サンプル と比較して、浅い準位も含め準位密度が約2倍に増加する。この結果も図1、図2に示した特性と 対応する。

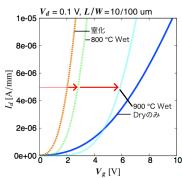


図 1: MOSFET の I_dV_g 特性

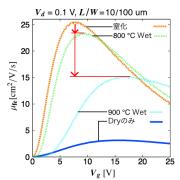


図 2: MOSFET の移動度

図 3: MOS キャパシタの準位密度

[1] M. Furuhashi, et.al: Proceedings of The 25th ISPSD, Kanazawa (2013) 2-4.