Ge-on-Insulator Fabrication by Smartcut Technology for Ge CMOS Photonics Platform

Jian Kang^{1,2}, Xiao Yu^{1,2}, Mitsuru Takenaka^{1,2}, and Shinichi Takagi^{1,2} ¹The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, ²JST-CREST E-mail: linick@mosfet.t.u-tokyo.ac.jp

Introduction

18p-A18-14

Recently, bottlenecks in bandwidth and power consumption of traditional electrical interconnection severely limit the growing functionalities in data processing. Electronic-photonic integrated circuits (EPICs) provides a good solution for optical interconnects with large data capacity and low power [1]. Ge has been demonstrated to be a most promising material in both electronic and photonic application meanwhile being compatible with the mainstream CMOS technologies [2]. In this paper, we propose a concept of Ge CMOS photonics platform on which high-performance Ge CMOS transistors and Ge-based photonic-wire devices can be monolithically integrated as shown in Fig. 1. For Ge CMOS photonics platform, we have fabricated high-quality Ge-on-Insulator (GOI) wafers by wafer bonding and Smartcut technology.

Fabrication procedure

The fabrication process and structure of the GOI wafer are shown in Fig. 2. First 100 nm SiO₂ was deposited on a 2-inch bulk Ge (100) donor wafer to protect its surface, on which H⁺ ion was implanted with dose of 4×10^{16} cm⁻² under 80 keV [3]. After removing the SiO_2 capping layer, GeO_x passivation [4] was performed to form Al₂O₃/GeO_x/Ge structure on the implanted Ge surface, which is supposed to improve the back interface property of the GOI substrate. Then the Ge donor wafer is manually bonded with a Si handle wafer. We formed 2-µm thick SiO₂ BOX layer by thermal oxidation, which is necessary for strong optical confinement in Ge photonic-wire waveguides. The bonded wafer is then annealed in vacuum at 300 °C for 30 min to enhance the bonding strength, followed by a 2^{nd} annealing in which the temperature is generally raised up to 400 °C to induce the splitting of Ge wafer.

Finally, CMP by alkali colloidal silica suspension is performed to reduce the surface roughness of the GOI

Results and discussion

substrate.

In order to characterize the GOI quality, a Hall device has been fabricated using the GOI substrate. Figure 3 shows the Hall measurement result of the Hall device with a Ge layer thickness of 400 nm. It is found that the majority carrier of fabricated GOI substrate is hole, with Hall mobility of 916 cm²/Vs and the carrier density of 5.4×10^{15} cm⁻³. The low impurity concentration and acceptable Hall mobility indicates a good Ge layer quality in the GOI substrate, which is mandatory to the EPICs application.

Acknowledgement

This work was partly supported by New Energy and Industrial Technology Development Organization (NEDO) and MEXT Grant-in-Aid for Scientific Research(S).

References

[1] M.S. Dahlem, et al., *General Assembly and Scientific Symposium* (2011) [2] J.F. Liu, et al., *ESC Trans.* **16**, issue 10 (2008) [3] L. Chen, et al., *Opt. Express*, **16**, 11513 (2008) [4] R. Zhang et al., *Appl. Phys. Lett.* **98**, 112902 (2011)

Fig. 2 Fabrication process and structure of GOI substrate

H⁺ ion implantation

100 nm SiO₂

Ge bulk

Wafer bonding

All a Bulk

2 µm SiO₂

Fig. 3 Hall measurement results, the inset shows top view of the Hall device

SiO₂ deposition

100 nm SiO₂

Ge bulk

Splitting & CMP

um SiC

Wet etching

Ge bulk

GeO_x passivation

Al₂O₃/GeO_x

Ge bulk