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Coupled-wave analysis for photonic-crystal surface-emitting lasers (XI1V)
— Effect of external reflection on the TE resonant mode —
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Photonic-crystal surface-emitting lasers (PCSELS) can potentially achieve single-mode operation with
low beam divergence and high power [1, 2]. It has been known since the 1970s from studies of
distributed feedback (DFB) lasers that external reflectors can dramatically alter the performance of lasers
with periodic resonant cavity structures [3, 4]. However, the study of this effect in PCSELSs is currently
lacking. One numerical study was performed by Sakai et al. in 2007 [5], but this study used a two-
dimensional coupled-wave model which could not accurately predict the effect of out-of-plane coupling
(i.e., surface emission). Furthermore, it did not consider TE modes, which are typically used for lasing in
high-power PCSELSs. In this work, we present a numerical study of the effect of external reflectors on TE-
mode characteristics in PCSELSs using a fully three-dimensional model [6, 7].

Figure 1 shows a schematic diagram of external reflection at the left boundary (x=0) of a square-lattice
PC with side length L. At this boundary, right-propagating basic wave R, is a fraction of left-propagating
basic wave S,. Mathematically,

R, = pexp(id) - Sy

where p and ¢ are the reflectivity and total phase, respectively. In a real device, p and ¢ depend on the
refractive index contrast between both sides of the boundary; ¢ further depends on the boundary’s
position relative to the PC’s holes. A numerical analysis is performed by setting either p or ¢ to a
constant value, then calculating the threshold gain of the cavity’s TE modes as a function of the other.

Such an analysis was performed for a GaAs square-lattice PC with side length L=70 um, lattice period
295 nm, and circular air holes with fill factor 0.16. Normalized threshold gain of this PC cavity’s
fundamental band-edge TE modes A, and B, are shown as functions of reflectivity and phase in Figure 2.
In Figure 2(a), ¢ is fixed to 0, and threshold gain aL of A, and B, peak at around p=0.6 and p=0.4,
respectively. In Figure 2(b), p is fixed to 0.4, and oL of A, and B, peak at around ¢=-n/8 and b=-n/4,
respectively. These results serve as design guidelines for minimizing threshold gain or, alternatively, for
maximizing the threshold gain margin between modes A, and B,. A more systematic analysis and
detailed physical interpretation will be presented at the conference. This work was partly supported by C-
PhoST and JSPS.
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Fig. 1 Schematic of reflection at the left Fig. 2 (a) Normalized threshold gain aL of modes A, and B, as a
(x=0) boundary of a square-lattice PC of  function of reflectivity p when phase ¢$=0. (b) Normalized threshold
side length L. S, and R, are basic waves. gain aL of modes Ay and By as a function of phase ¢ when reflectivity
pexp(id) is the boundary’s reflection p=0.4. As indicated in Figure 1, only the left boundary’s reflection is
coefficient. changed; reflection at the other boundaries is zero.
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