

Coupled-wave analysis for photonic-crystal surface-emitting lasers (XIV) – Effect of external reflection on the TE resonant mode –

Kyoto Univ.¹, ACCEL JST² ^OJ. Gelleta^{1,2}, Y. Liang^{1,2}, H. Kitagawa^{1,2}, and S. Noda^{1,2} Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 E-mail: johngelleta@qoe.kuee.kyoto-u.ac.jp, snoda@kuee.kyoto-u.ac.jp

Photonic-crystal surface-emitting lasers (PCSELs) can potentially achieve single-mode operation with low beam divergence and high power [1, 2]. It has been known since the 1970s from studies of distributed feedback (DFB) lasers that external reflectors can dramatically alter the performance of lasers with periodic resonant cavity structures [3, 4]. However, the study of this effect in PCSELs is currently lacking. One numerical study was performed by Sakai *et al.* in 2007 [5], but this study used a two-dimensional coupled-wave model which could not accurately predict the effect of out-of-plane coupling (i.e., surface emission). Furthermore, it did not consider TE modes, which are typically used for lasing in high-power PCSELs. In this work, we present a numerical study of the effect of external reflectors on TE-mode characteristics in PCSELs using a fully three-dimensional model [6, 7].

Figure 1 shows a schematic diagram of external reflection at the left boundary (x=0) of a square-lattice PC with side length *L*. At this boundary, right-propagating basic wave R_x is a fraction of left-propagating basic wave S_x . Mathematically,

$$R_x = \rho \exp(i\phi) \cdot S_x$$

where ρ and ϕ are the reflectivity and total phase, respectively. In a real device, ρ and ϕ depend on the refractive index contrast between both sides of the boundary; ϕ further depends on the boundary's position relative to the PC's holes. A numerical analysis is performed by setting either ρ or ϕ to a constant value, then calculating the threshold gain of the cavity's TE modes as a function of the other.

Such an analysis was performed for a GaAs square-lattice PC with side length $L=70 \ \mu\text{m}$, lattice period 295 nm, and circular air holes with fill factor 0.16. Normalized threshold gain of this PC cavity's fundamental band-edge TE modes A₀ and B₀ are shown as functions of reflectivity and phase in Figure 2. In Figure 2(a), ϕ is fixed to 0, and threshold gain αL of A₀ and B₀ peak at around $\rho=0.6$ and $\rho=0.4$, respectively. In Figure 2(b), ρ is fixed to 0.4, and αL of A₀ and B₀ peak at around $\phi=-\pi/8$ and $\phi=-\pi/4$, respectively. These results serve as design guidelines for minimizing threshold gain or, alternatively, for maximizing the threshold gain margin between modes A₀ and B₀. A more systematic analysis and detailed physical interpretation will be presented at the conference. *This work was partly supported by C-PhoST and JSPS*.

References: [1] E. Miyai *et al., Nature*, **441**, 946 (2006). [2] K. Hirose *et al., Nature Photon*, **8**, 406 (2014). [3] S. Chinn. IEEE J. Quant. Elec. **QE-9**, 574 (1973). [4] W. Streifer *et al.*, IEEE J. Quant. Elec. **QE-11**, 154 (1975). [5] K. Sakai *et al.* Opt. Express **15**, 3981 (2007). [6] Y. Liang *et al.*, Phys. Rev. B **84**, 195119 (2011). [7] Y. Liang *et al.*, Opt. Express **20**, 15945 (2012).

Fig. 1 Schematic of reflection at the left (*x*=0) boundary of a square-lattice PC of side length *L*. S_x and R_x are basic waves. $pexp(i\phi)$ is the boundary's reflection coefficient.

Fig. 2 (a) Normalized threshold gain αL of modes A_0 and B_0 as a function of reflectivity ρ when phase $\phi=0$. (b) Normalized threshold gain αL of modes A_0 and B_0 as a function of phase ϕ when reflectivity $\rho=0.4$. As indicated in Figure 1, only the left boundary's reflection is changed; reflection at the other boundaries is zero.