Coupled-wave analysis for photonic-crystal surface-emitting lasers (XIV)
– Effect of external reflection on the TE resonant mode –

Kyoto Univ.1, ACCEL JST2 J. Gelleti1,2, Y. Liang1,2, H. Kitagawa1,2, and S. Noda1,2
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510
E-mail: johngeletta@qoe.kuee.kyoto-u.ac.jp, snoda@kuee.kyoto-u.ac.jp

Photonic-crystal surface-emitting lasers (PCSELs) can potentially achieve single-mode operation with low beam divergence and high power [1, 2]. It has been known since the 1970s from studies of distributed feedback (DFB) lasers that external reflectors can dramatically alter the performance of lasers with periodic resonant cavity structures [3, 4]. However, the study of this effect in PCSELs is currently lacking. One numerical study was performed by Sakai et al. in 2007 [5], but this study used a two-dimensional coupled-wave model which could not accurately predict the effect of out-of-plane coupling (i.e., surface emission). Furthermore, it did not consider TE modes, which are typically used for lasing in high-power PCSELs. In this work, we present a numerical study of the effect of external reflectors on TE-mode characteristics in PCSELs using a fully three-dimensional model [6, 7].

Figure 1 shows a schematic diagram of external reflection at the left boundary ($x=0$) of a square-lattice PC with side length L. At this boundary, right-propagating basic wave R_s is a fraction of left-propagating basic wave S_x. Mathematically,

$$R_x = \rho \exp(i\phi) \cdot S_x$$

where ρ and ϕ are the reflectivity and total phase, respectively. In a real device, ρ and ϕ depend on the refractive index contrast between both sides of the boundary; ϕ further depends on the boundary’s position relative to the PC’s holes. A numerical analysis is performed by setting either ρ or ϕ to a constant value, then calculating the threshold gain of the cavity’s TE modes as a function of the other.

Such an analysis was performed for a GaAs square-lattice PC with side length $L=70 \mu m$, lattice period 295 nm, and circular air holes with fill factor 0.16. Normalized threshold gain of this PC cavity’s fundamental band-edge TE modes A_0 and B_0 are shown as functions of reflectivity and phase in Figure 2. In Figure 2(a), ϕ is fixed to 0, and threshold gain αL of A_0 and B_0 peak at around $\rho=0.6$ and $\rho=0.4$, respectively. In Figure 2(b), ρ is fixed to 0.4, and αL of A_0 and B_0 peak at around $\phi=-\pi/8$ and $\phi=-\pi/4$, respectively. These results serve as design guidelines for minimizing threshold gain or, alternatively, for maximizing the threshold gain margin between modes A_0 and B_0. A more systematic analysis and detailed physical interpretation will be presented at the conference. This work was partly supported by C-PhoST and JSPS.

Fig. 1 Schematic of reflection at the left ($x=0$) boundary of a square-lattice PC of side length L. S_x and R_x are basic waves. $\exp(i\phi)$ is the boundary’s reflection coefficient.

Fig. 2 (a) Normalized threshold gain αL of modes A_0 and B_0 as a function of reflectivity ρ when phase $\phi=0$. (b) Normalized threshold gain αL of modes A_0 and B_0 as a function of phase ϕ when reflectivity $\rho=0.4$. As indicated in Figure 1, only the left boundary’s reflection is changed; reflection at the other boundaries is zero.