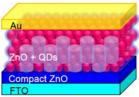
Improved open-circuit voltage in ZnO/PbS quantum dot heterojunction solar cells through the surface passivation of ZnO nanowires

^oJin Chang, ¹ Yuki Kuga, ¹ Yuhei Ogomi, ^{2,4} Shuzi Hayase, ^{2,4} Kenji Yoshino, ^{3,4} Taro Toyoda, ^{1,4} Oing Shen, ^{1,4}


Univ. Electro-Commun.¹, Kyushu Inst. Tech.², Miyazaki Univ.³, CREST JST⁴ Email: shen@pc.uec.ac.jp

Introduction

Solid state quantum dot solar cells (QDSCs), such as bulk heterojunction PbS/ZnO QDSCs, are attracting much attention owing to their broadband light-harvesting and the potential of high efficiency and low cost. Recent progress has pushed the efficiency of PbS/ZnO QDSCs above 8% through the QD surface passivation.¹ However, the open-circuit voltages (V_{oc}) are still lower than theoretical expectations calculated from the corresponding energy levels.² One reason could be due to the defects located near the conduction band of ZnO. Here, we proposed a method that an ultra-thin TiO₂ layer grown on ZnO surfaces could eliminate the effect of ZnO defects and improve the cell performances.

Experimental Method

ZnO-PbS bulk heterojunction solar cells (as illustrated in Fig. 1) were fabricated by solution-processed methods.3 Firstly, ZnO nanowires (ZnO-NWs) were grown by a wet-chemical method on fluorine-doped tin oxide glasses coated with a ZnO compact layer. Then, thin TiO₂ layers were coated on ZnO-NWs by a chemical bath deposition (CBD) method. Finally, ZnO-NWs were filled and coated with PbS QDs, followed by the deposition of a gold contact layer.

Fig. 1 Schematic illustration of the structure of ZnO-PbS bulk heterojunction solar cells.

Results and Discussion

Fig. 2 shows the fluorescence spectra of ZnO-NWs with and without TiO_2 coating. The emission intensity at around 600 nm significantly dropped after TiO_2 treatment, which was attributed to the decrease of surface defects in ZnO. As shown in Fig. 3, the V_{oc} and efficiency of ZnO/PbS cells were significantly

improved by the TiO₂ treatment. When higher concentration of TiO₂ precursors was applied, the V_{oc} slightly decreased, which could be due to the intrinsic defects within TiO₂ layer. Our results indicate the surface passivation can suppress recombination through removing ZnO defects and thus significantly improve the V_{oc} and power convention efficiency.

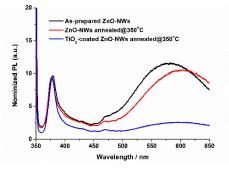


Fig. 2 Fluorescence spectra of as-prepared ZnO-NWs, and annealed ZnO-NWs with and without TiO_2 passivation.

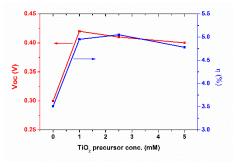


Fig. 3 The effect of TiO_2 passivation on the V_{oc} and efficiency of ZnO/PbS solar cells.

References

1. C.-H. M. Chuang, P. R. Brown, V. Bulović and M. G. Bawendi, *Nat. Mater.*, **2014**, doi: 10.1038/nmat3984.

 R. L. Z. Hoye, B. Ehrler, M. L. Böhm, D. Muñoz-Rojas, R. M. Altamimi, A. Y. Alyamani, Y. Vaynzof, A. Sadhanala, G. Ercolano, N. C. Greenham, R. H. Friend, J. L. MacManus-Driscoll and K. P. Musselman, *Adv. Energy Mater.*, 2014, doi: 10.1002/aenm.201301544.

3. H. Wang, T. Kubo, J. Nakazaki, T. Kinoshita and H. Segawa, J. Phys. Chem. Lett., 2013, 4, 2455-2460.