19a-A12-3

クリティカルレイヤーを用いたスパッタ AI 添加 ZnO 透明電導電膜の キャリア輸送制御

Effects of Critical Layers on Carrier Transport of Polycrystalline Al-Doped ZnO Films Prepared by Magnetron Sputtering

> 高知工科大総研 ^O野本淳一、牧野久雄、山本哲也

> 57个件 、仅57八雄、四个日已

Research Inst. Kochi Univ. Tech.

[°]J. Nomoto, H. Makino, T. Yamamoto,

E-mail: nomoto.junichi@kochi-tech.ac.jp

【はじめに】本研究において提案する"*Critical Layer* (以下、*CL* と呼称)"は、多結晶構造を有する Al 添加 ZnO (AZO) 透明導電膜において、高ホール移動度 (μ_{Hall})の実現を目的とする。これまで、高 μ_{Hall} 実現のための2つの相補的な関係にある設計指針を提案している^{1,2)}。具体的には、

①光学移動度 (μ_{opt}) の増大、と②粒界散乱の寄与 μ_{opt} / μ_{gb} の低減、である。ここで μ_{gb} は、粒 界でのキャリア移動度である。本研究では、該設計指針を効果的に実現する制御法として、基板 とバルク層との間に *CL* を挿入し、AZO 膜の特性に及ぼす効果について検討した。

【実験方法】AZO 膜 (基板 (Corning, EAGLE XG) 温度は 200 $^{\circ}$ C、ターゲットは ZnO に Al₂O₃ (2.0 wt.%) を混合した円形高密度焼結体) は、マグネトロンスパッタ法 (MS) 成膜装置 (ULVAC, CS-L) により成膜した。具体的な行程は、次の通りである。①高い *c* 軸配向性を実現可能とす る成膜方式である高周波 (RF) -MS^{1,2)}により、*CL* (AZO 膜 (膜厚: 2 - 30 nm)) を基板上に堆積す る。②次に、総膜厚 500nm になるまで AZO 膜を直流 (DC) -MS によって堆積する。

【結果と考察】AZO 膜の μ_{opt} / μ_{gb} の大きさは挿入する *CL* の膜厚に著しく依存した。表 1 は、 様々な膜厚を有する *CL* に対する AZO 膜の電気特性及び構造特性を示す。表 1 から明らかな ように、膜厚 10 nm の *CL* において、 μ_{Hall} (= 35.1 cm²/Vs) および N_e (= 6.15×10²⁰ cm⁻³) の両方 において、最高値が得られ、その結果、最も低い抵抗率 (ρ) となる ρ = 2.89×10⁴ Ωcm が実現さ れている。特記すべき *CL* 効果として、粒界散乱の寄与 μ_{opt}/μ_{gb} の低減が明白となった。*CL* 無 しの場合 (表 1 中、最下段) である μ_{opt}/μ_{gb} = 0.30 から、*CL* 挿入により、 μ_{opt}/μ_{gb} = 0.07 まで 激減している。その一方で、本研究では、 μ_{opt} に対する *CL* 効果は、ほとんど確認されなかった。 次に *CL* 挿入の構造への効果は下記の通りである。柱状構造間での *c* 軸平行配列度の上昇 ((002) ω ロッキングカーブ FWHM の減少) 及び基板表面に平行な横方向グレインサイズ *L* の 増大をもたらす効果があることが、 XRD 測定結果の解析により明白となった。一方で、粒界散 乱の寄与の変化と構造特性の変化との関係は明白でない。今後、粒界散乱の寄与の程度を決定付 ける第一因子の解明を行う。

【謝辞】日本学術振興会科研費 若手研究 (B)(研究費番号 26790050)による支援を受けている。

CL Thickness [nm]	Resistivity ρ [×10 ⁻⁴ Ωcm]	Carrier Concentration N_e [× 10 ²⁰ cm ⁻³]	Hall Mobility μ_{Hall} [cm ² /Vs]	Optical Mobility μ_{opt} [cm ² /Vs]	Contribution of GB μ_{opt} / μ_{GB}	FWHM (002) ω[deg.]	Grain Size <i>L</i> [nm]
30	3.43	5.32	34.2	39.5	0.16	4.46	44.1
10	2.89	6.15	35.1	37.6	0.07	4.51	44.1
5	3.03	5.92	34.7	37.2	0.07	5.81	46.7
2	3.26	5.88	32.9	36.2	0.10	5.85	44.1
0	3.59	5.92	29.3	38.0	0.30	13.7	35.9

表 1. 異なる膜厚 CL と電気特性及び構造特性との関係

【参考文献】 (1) 野本淳一 他, 第 61 回応用物理学会春季学術講演会, 18a-E10-6. (2) J. Nomoto *et al.*, ICRP-8 / SPP-31 (2014) 5B-AM-06.