化学浴析出法により作製した酸化チタンを用いた 積層型ペロブスカイト太陽電池の研究

Study of Planar Heterojunction Perovskite Photovoltaic Cells using Compact Titanium
Oxide by Chemical Bath Deposition

金沢大¹, JST-さきがけ² °山本 晃平¹, 桑原 貴之¹, 髙橋 光信¹, 當摩 哲也^{1,2}

Kanazawa Univ.¹, JST-PRESTO² °K. Yamamoto¹, T. Kuwabara¹, K. Takahashi¹, T. Taima^{1,2}

E-mail: taima@se.kanazawa-u.ac.jp

【緒言】ペロブスカイト結晶構造を用いた太陽電池は 17%を超える高い変換効率が報告されている。塗布型のペロブスカイト太陽電池には色素増感太陽電池と同様な 500[°]C以上の高温処理が必要な compact- TiO_2 層と mesoporous- TiO_2 層が使われている。一方で、planar hetero 接合型では mesoporous- TiO_2 層を使わず、compact- TiO_2 層だけで駆動することが報告されている 1 。今回は蒸着 法を用い、低温処理で製膜できる化学浴析出法(CBD 法)により作製した compact- TiO_x 層を用いて 真空蒸着によりペロブスカイト太陽電池を作製したので報告する。

【実験】素子構成は、Fig. 1 に示す。amorphous compact-TiO_x は ITO 上に CBD 法により製膜し 250℃で加熱した ²。また、anatase compact-TiO₂ は FTO 上に CBD 法により製膜し 450℃で加熱した。次に PbI₂ 層を蒸着法で製膜し、その上に CH₃NH₃I(MAI)を蒸着積層し、PbI₂層に MAI を intercalate することで CH₃NH₃PbI₃層を製膜した。 J-V 曲線測定時の電圧掃引速度は 0.01 V/sec とした。掃引方向は負バイアスから正バイアス(Jsc 側から Voc 側)に電圧を掃引した。

【結果・考察】J-V 曲線と太陽電池特性を Fig. 2 に示す。1 回積層の 30nm の compact-TiO₂ (450°C single layer: SL)を使用した素子は変換効率(PCE)が約 1.5% と低い効率であった。そこで、2 回積層の 60nm の compact-TiO₂ (450°C double layer: DL)を導入したところ PCE が約 3 倍向上した。一方の compact-TiO_x (250°C SL)を使用した素子は、一回の製膜で十分な性能が得ることができた。原因考察のため、AFMでそれぞれの表面を観察したところ、Fig. 3(a)、(b)の compact-TiO₂ 表面は非常に粗い(RMS>20nm)が、Fig. 3(c)の

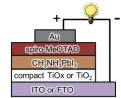


Fig 1 表子構造

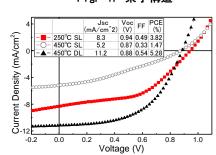


Fig. 2. J-V 曲線と太陽電池特性

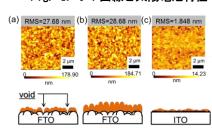


Fig. 3. AFM 像と断面図(a)FTO/SL-TiO₂ (b)FTO/DL-TiO₂(c)ITO/SL-TiO_x

compact-TiO $_x$ 表面は平滑(RMS<2nm)であった。このことから、compact-TiO $_2$ (SL)膜は粗い FTO を 完全に被覆できないため PCE が低くなったと考えられる。反対に、compact-TiO $_x$ (SL)は、平滑な ITO 上に製膜するため極薄膜でも十分に被覆でき、大きな性能が得られたと考えられる。

【参考文献】[1] H. J. Snaith et al, Nature, **501**, 395–398, 2013. [2] T. Kuwabara, K. Takahashi et al, Org. Electron., 13 (2012) 1136.