放射線による局所昇温現象を考慮したソフトエラーシミュレーション Soft-error simulation with a model for radiation-induced increase in local temperature JAXA 宇宙研¹,東大院工² ○小林 大輔^{1,2},伊藤 大智¹,廣瀬 和之^{1,2}

ISAS/JAXA¹, U. Tokyo² ^ODaisuke Kobayashi^{1,2}, Taichi Ito¹, Kazuyuki Hirose^{1,2} E-mail: d.kobayashi@isas.jaxa.jp

【はじめに】ソフトエラーは半導体集積回路が一発の放射線によって誤動作する現象である. 今日 に至っては、厳しい放射線環境に晒される宇宙用途は元より地上用途であっても、この現象がもた らす影響の評価・対策が欠かせない. TCAD シミュレーションはそのために良く使われるが,放射 線によって生じる局所的で過渡的な昇温現象が取り込まれていない。我々はこの現象をモデル化し、 その必要性を明らかにすることに取り組んでいる. 【モデル化】200 nm 完全空乏型 SOI-CMOS 回 路^[1]に、α線に代表される重イオン放射線が当たった場合を考える。エネルギー付与の大半は電離 を介してである.励起された電子のエネルギーの一部はフォノン散乱により格子へと輸送され、温 度上昇をもたらす. チャネル Si 領域 (SV) として厚さ t_{SOI} = 50 nm で 200 nm × 200 nm 角の SOI 薄 膜を想定し、ある LET(Linear Energy Transfer) [MeV·cm²/mg] の放射線がその中央に垂直入射した とする. ここで LET は放射線が電離を介して固体に付与する単位長さ当たりのエネルギーである. 50 nm 程度の薄膜であれば軌跡方向の LET の変化は無視できる.動径方向については LET は何ら 情報を与えないので PmTs コード^[2] で検討した. Fig.1(a) に結果を示す. 200 nm 程度の広さがあれ ばエネルギーの大半がその領域に付与されることがわかる (r = 100 nm で 7 割). そこで, 動径方向 のエネルギーのはみ出しはなく全エネルギー ($E = LET \times t_{SOI}$)がSVに付与されるとし、かつ、SV に一様分布すると仮定した (類似想定が [3] に見られる).更に,悲観的な見積りにすべく, E の全 てが温度上昇 ΔT に寄与したと考えて,当該 SV の体積と比熱から ΔT を 0.52×LET [K] と記述し た.そして,SV が酸化膜に囲まれていることや Si 薄膜における熱伝導率の急激な減少^[4] を考慮し て放熱を無視すると,放射線が当たった素子の雰囲気温度を ΔT だけ上昇させたシミュレーション が悲観的な見積りを与えると考えた. 【試算】Fig.1(b,c) はインバータ回路における TCAD シミュ レーションの結果である. Fig.1(b)の通り,放射線による出力電圧の変動は昇温現象の導入により 大きくなる. Fig.1(c) はパルス幅 Tw の LET 依存性を示す. 昇温現象の効果は LET が大きいほど顕 著で最大で10%程度である。二次元シミュレーションの結果であるためTwの絶対値については議 論できないが相対的には良いと考えると,ソフトエラー耐性は Tw に比例して低下するので,昇温 現象を取り入れていない現在のシミュレーションは楽観的な結果を与えているが、その差は最大で 10%程度と予想する.[1] 廣瀬他,応用物理 83(8).[2] Sato et al., J. Nucl. Sci. Technol. 50, p.913.[3] Butt and Alam, IRPS08, p.547. [4] 内田, 応用物理 83(4), p.262. [5] Uemura et al., JJAP47(4), p.2736.

Fig. 1: Profile of energy deposition (a), and radiation-induced noise pulses on an inverter output estimated with and without a model for temperature increase: (b) waveforms and (c) evolutions of temporal widths.