## ALD により形成した Al<sub>2</sub>O<sub>3</sub>/Ge ゲートスタックに於ける Kr/O<sub>2</sub> ECR プラズマ酸化効果 Kr/O<sub>2</sub> ECR plasma oxidation effects on Al<sub>2</sub>O<sub>3</sub>/Ge gate stack formed by ALD

九大・大学院総合理工学府<sup>1</sup>,九大・産学連携センター<sup>2</sup> 長岡 裕一<sup>1</sup>,永冨 雄太<sup>1</sup>,山本 圭介<sup>2</sup>,王 冬<sup>1</sup>,中島 寛<sup>2</sup> I-Eggs, Kyushu Univ.<sup>1</sup>, KASTEC, Kyushu Univ.<sup>2</sup>: Y. Nagaoka<sup>1</sup>, Y. Nagatomi<sup>1</sup>, K. Yamamoto<sup>2</sup>, D. Wang<sup>1</sup>, H. Nakashima<sup>2</sup> E-mail: 2ES13032W@s.kyushu-u.ac.jp

## 1. <u>はじめに</u>

Ge は次世代 CMOS の高移動度チャネル材料として注目されている。CMOS をメタル・ソース/ドレイン (S/D)型 MOSFET で構成する場合、コンタクト特性の劣化を避けるため、ゲートスタックは低温で 作製する必要がある。我々の研究グループは、SiO<sub>2</sub>/Si ゲートスタックに於いて、Kr/O<sub>2</sub>-ECR プラズマ酸 化が Ar/O<sub>2</sub>-ECR プラズマよりも良好なゲートスタック形成に適していることを報告している[1]。今回、ALD と Kr/O<sub>2</sub>-ECR プラズマ酸化を用いて MOS キャパシタ (CAP) と p-MOSFET の作製を試みた。本講 演では、それらの電気的特性を Ar/O<sub>2</sub>-ECR プラズマと比較し、Kr/O<sub>2</sub>プラズマ酸化の優位性を報告する。 2. 試料作製

使用した n-, p-型 (100) Ge 基板の抵抗率はそれぞれ 0.4 および 0.3  $\Omega$ cm である。Ge 基板を化学洗浄 後、トリメチル Al を原料とした ALD により 300 °C で 1 nm-Al<sub>2</sub>O<sub>3</sub> を堆積した (1 cycle: 0.13 nm)。その後、 ECR プラズマ酸化を室温で 1 min 行った。酸化条件は、マイクロ波: 500 W、Kr/O<sub>2</sub>: 18/3 sccm または Ar /O<sub>2</sub>: 18/3 sccm、である。この試料に対して、300 °C で 3.9 nm の Al<sub>2</sub>O<sub>3</sub> を再堆積し PDA を 400 °C-30 min 行った。その後、ゲート電極として膜厚 50 nm の TiN を堆積し、350 °C-20 min の PMA を行い、Al の堆 積後に電極加工を行い、Al/TiN/Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/p-Ge 構造の MOS キャパシタを作製した。このゲートスタ ックを用いて、HfGe をメタル S/D とした p-MOSFET を試作した。

## 3. <u>電気特性</u>

Kr/O<sub>2</sub>とAr/O<sub>2</sub>プラズマ酸化を用いた MOSCAP の *C-V* 特性(室温測定)を Fig. 1 に示す。この *C-V* 特性 から得られた、等価 SiO<sub>2</sub> 換算膜厚(EOT)、フラットバンド電圧( $V_{fb}$ )、ヒステリシス(HT)を Fig. 1 中に示す。両 MOSCAP の EOT は 2.9 nm で、典型的な *C-V* 特性を示す。 $V_{fb}$  から推定された固定電荷密 度は、Kr/O<sub>2</sub> と Ar/O<sub>2</sub>の場合でそれぞれ 7×10<sup>10</sup> と 6×10<sup>11</sup> cm<sup>-2</sup>であった。また、HT は Kr/O<sub>2</sub> と Ar/O<sub>2</sub>の 場合で大きな違いはなかった。一定温度 DLTS 法[2]で測定した  $D_{it}$ 分布を Fig. 2 に示す。バンドギャッ プ下半分に於ける  $D_{it}$ は Kr/O<sub>2</sub> の場合が低く、特に価電子帯端近傍では  $D_{it}$ が約 1/2 に低減した。これら の電気的特性の比較から、Kr/O<sub>2</sub>プラズマ酸化は Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge ゲートスタックの低温形成に有用と言え る。Fig. 3 に S/D を HfGe/Ge コンタクト、ゲートスタックを Kr/O<sub>2</sub> と Ar/O<sub>2</sub> プラズマ酸化で作製した p-MOSFET (EOT=3 nm)の  $I_{D}$ - $V_{D}$ 特性を示す。Ar/O<sub>2</sub>よりも Kr/O<sub>2</sub>プラズマを用いて作製した MOSFET の方が電流駆動力が高いことが分かる。詳細な特性は本講演で述べる。

[参考論文] [1] J. Wang et al., JJAP 42, 6496 (2003). [2] D. Wang et al., JAP 112, 083707 (2012).



Fig.1 C-V characteristics of Al/TiN/Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/p-Ge MOSCAPs fabricated by  $Kr/O_2$  and  $Ar/O_2$  plasma. oxidation.



Fig.3  $I_D$ - $V_D$  characteristics of HGe-S/D Ge p-MOSFETs with Al<sub>2</sub>O<sub>3</sub>/GeO<sub>X</sub>/Ge gate stacks fabricated using Kr/O<sub>2</sub> and Ar/O<sub>2</sub> plasma oxidations.