プラズマ後窒化 HfO₂/Al₂O₃/SiGe_{0.32} MOS 界面の電極依存性 The impact of gate electrode on HfO₂/Al₂O₃/SiGe_{0.32} MOS interface with plasma post-nitridation 東大院工¹, JST-CREST² ^o韓 在勲^{1,2}, 竹中 充^{1,2}, 高木 信一^{1,2} Univ. of Tokyo¹, JST-CREST² ^oJaehoon Han^{1,2}, M. Takenaka^{1,2}, S. Takagi^{1,2} E-mail: hanjh@mosfet.t.u-tokyo.ac.jp

【はじめに】近年,高い正孔移動度を持つ歪シリ コンゲルマニウム(SiGe)が高性能 MOSFET のチ ャネル材料として注目され、低い Ge 組成を持つ SiGe MOSFET は既に実用化の段階に入っている. SiGeは光の変調効率を向上するため、Siのキャリ アプラズマ効果を増大する材料としても期待さ れている[1]. しかし, SiGe MOS 界面の高い界面 準位密度(D_{it})は MOS デバイスの高性能化の妨げ となっており、D_{it}の低減化技術の開発が急務と なっている. 我々は、これまでに ECR (Electron cyclotron resonance)法によるプラズマ後窒化によ り, EOT (Effective oxide thickness)の増加を抑制し つつ, 低 D_{it}を持つ良好な SiGe MOS 界面が得ら れることを報告した[2]. また、プラズマ後窒化を 用いた HfO₂/Al₂O₃/SiGe MOS 構造を用いること で良好な MOS 界面特性を保ったまま、EOT スケ ーリングが実現出来る可能性を示した[3]. しか し、この技術で 2 nm を切る EOT の報告はなく、 低 EOT を持つ MOS 構造の実現が急務とされて いる. 今までの報告で使用した Al 電極は酸化さ れやすく、EOT スケーリングが難しい. 低EOT を 実現するためには,AI以外の電極を用いる必要が ある. 本研究では, HfO₂/Al₂O₃/SiGe MOS 構造の スケーリングのためのゲート電極依存性を調べ ると共に、2 nm を切る EOT を持つプラズマ後窒 化 HfO₂/Al₂O₃/SiGe MOS 構造について報告する.

【実験結果】図1にプラズマ後窒化による SiGe MOS キャパシタの作製プロセスを示す. 基板と して, Si 上にエピタキシャル成長した膜厚 8 nm の SiGe_{0.32} を用意した. ALD (Atomic layer deposition)法で基板上に Al2O3 を 0.3 nm 堆積させ た後, ECR 法で発生させた RF パワー150 W の窒 素プラズマを 300℃ で加熱させた基板に 10 秒間 照射した. その後, HfO, を追加堆積し, 電極形成, 熱処理を経てキャパシタを完成させた. PDA と PMAは400℃で1分間施した.ゲート電極はスパ ッタ法で堆積した TiN, Taと熱蒸着で堆積した Al を用いた. 最後に TiN と Ta の上には Al をパット 電極として堆積した. 図2に作製した各々のキャ パシタの CV 特性を示す.界面準位による周波数 分散は Al が一番小さいが、表1から分かるよう に, EOT とゲートリークの面で Al は不利である. EOT を 1.5 nm 以下にスケーリングした場合, Al 電極 MOS キャパシタの C-V 特性が測定できない

ほどゲートリークが増大してしまう. Ta と TiN はゲートリークの面ではほぼ同等だが, Ta の EOT が小さい結果となった. この結果を受けて, Ta ゲート電極を用いて EOT スケーリングを試み た. 図3にプラズマ後窒化条件を最適化した EOT 1.1 nm の Al/Ta/HfO₂/Al₂O₃/SiGe_{0.32} MOS キャパシ タの CV 特性を示す. ALD で Al₂O₃ を 0.2 nm 堆積 した後, プラズマ後窒化を施し, その上に HfO₂ を 2.4 nm 堆積した. 周波数分散が小さいことか ら,良好な MOS 界面特性を保ったまま 1.1 nm の EOT が実現されたことが分かる.

【謝辞】本研究の一部は独立行政法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務の結果得られたものである。また、技術支援をいただいた住友化学株式会社市川磨氏、長田剛規氏、秦雅彦氏に深く感謝申し上げる。

【参考文献】[1] M. Takenaka and S. Takagi, JQE, **48**, p. 8, 2012 [2] 韓在勲他, 第 60 回応用物理学会春季学術講演会, 神奈川 工科大学, 28a-G2-6 [3] 韓在勲他, 第 74 回応用物理学会秋季 学術講演会, 同志社大学, 17p-B5-8

	EOT	J_g at V_{fb} -1V	J_g at V_{fb} -2V
	[nm]	[A/cm ²]	[A/cm ²]
Та	1.21	4.42E-06	5.47E-04
TiN	1.23	1.58E-06	7.56E-04
Al	1.54	1.44E-02	1.02E+00
to be an interest of the second			

図2. EOT 1.2 nmのプラズマ後窒化 Al/Ta/HfO₂/Al₂O₃/SiGe_{0.32} MOSキャパシタ