XAFS による表面構造反応オペランド観察

Operando Time and Spatially Resolved XAFS for Structural Kinetics and

Spatial Mapping of Fuel Cell Catalysts

⁰岩澤 康裕¹

Univ. of Electro-Communications¹ E-mail: iwasawa@pc.uec.ac.jp

燃料電池の産業化は進んでいるが、燃料電池自動車の本格普及のためには、Pt 使用量の低減と 燃料電池システムの低コスト化が必須で、Pt 触媒の活性の増大、溶出・失活の抑制、長寿命化な どの問題を解決する革新的燃料電池の開発が望まれている。そのためには、電池作動時の触媒の 構造・電子状態変化、電極触媒表面の化学反応機構、溶解・劣化機構、触媒種の分散・空間分布 など、燃料電池の原理に遡った operando 解析が必要であると考えられている。しかし、実燃料電 池系は、ウエット・不均質・不均一空間分布・多相・界面など複雑環境の不均一混合分散系であ るため、多くの分析方法がほとんど適用できない。実用燃料電池ナノ粒子触媒の発電下での元素 選択的な構造反応解析には、XAFS(X線吸収微細構造)が唯一で強力な手法である。

XAFS 法による触媒研究は 1970 年代、Lytle, Via, Sinfelt(米国) によって担持金属ナノ粒子 の構造に関する先駆的研究が行われたが、担体表面に分散した活性触媒の分子レベル構造を初め て明らかにしたのは我が国である(黒田, 岩澤ら: 1982 年につくばの KEK-PF において初めて放 射光が出て本格運用が始まったその年に、岩澤らにより、わが国で最初の XAFS 研究論文が報告さ れた)。また、朝倉, 岩澤らは、1985年、世界に先駆けて触媒反応過程の in-situ 構造測定に成 功した。その後、国内外で XAFS を用いた触媒研究が爆発的に増加し、多くのグループにより多様 な触媒へと展開され、現在、担持触媒の研究に XAFS は無くてはならない構造解析法となっている。 2003年には、松下により提唱されたが誰も測定解析に成功しなかった DXAFS 法を、野村, 岩澤ら が時間分解 XAFS 法として確立し、2007 年にはリアルタイム XAFS 計測へと発展させた。2003 年、 Weckhuysen らは岩澤らの in-situ XAFS 法を広げ諸種の解析法と組合わせた operando XAFS を提 唱した。さらに、2007年、唯, 岩澤らは新しい QXAFS 法を提案し、それを用いて実運転下での燃 料電池触媒の in-situ (operando) XAFS 測定に成功した。2011 年、唯, 岩澤らは、一粒の触媒ナ ノ粒子の XAFS 測定に成功し、空間分解 XAFS 法を実現させた。2013 年、唯,宇留賀, 星野らは、 新しい3次元ラミノグラフィ XAFS 法を開発し、燃料電池触媒層の非破壊3次元 XAFS イメージン グを可能とした。また、2014 年、唯, 宇留賀, 辻, 岩澤らは、走査型顕微 XAFS 法を開発し、触 媒一粒子内の酸化状態マッピング(唯ら)および燃料電池劣化過程の触媒層の2次元マッピング (岩澤ら)に成功した。現在、新ビームライン BL36XU では、時間分解 XAFS、空間分解 XAFS に加 えて、AP-HAXPES、XRD/XAFS、XCT-XAFS 法などの相補的な手法の開発も行っており、より多角的 な精度の高い情報を得られるようにしている。

本講演では、NEDO プログラム推進のため SPring-8 の BL36XU に新たに建設した、燃料電池計測 用 XAFS ビームライン「先端触媒構造反応リアルタイム計測ビームライン」の紹介とそれを用いた 燃料電池触媒の *in situ* XAFS、時間分解 XAFS および空間分解 XAFS の最近の解析・評価例を報告 する。

図1 燃料電池触媒の反応機構と各素過程の速度定数

図2 燃料電池カソード触媒層の2次元 Pt 酸化状態マッピング