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Recently, functional oxides have received much attention for alternative plasmonic materials [1-3].
Plasmonic manipulations based on Mott transition provide new insight im many areas of scientific and
practical fields, which produce an additional means of tuning plasmonic properties in a manner that is not
as readily available in metals. In this presentation, we report the control of surface plasmons in VO,
nanodots by the Mott transition from an insulating to a metal phase.

Plasmon resonance energy (hvs,) of a VO, nanodot array sample with a size of 816 nm was observed at
0.39 eV [inset in Fig. 1(a)]. The plasmon energy showed a blue-shift with decreasing dot size down to the
size down to 250 nm. The plasmon lifetime (7, = 2//I") related to the spectral line-width increased with
red-shifted Avg, and a 7, value as large as 12 fs for nanodot size of 816 nm was observed [Fig. 1]. This
property is attributed to the electronic properties of VO,. Indeed, 3d orbitals localized below 1.2 eV from
the Fermi level act as plasmon damping based on an inter-band transition. Therefore, plasmon excitations
become effective by suppression of the plasmon damping in the mid-IR range. The modified
long-wavelength approximation (MLWA) can theoretically acquire spectral information, revealing that the
experimental 7, values were in reasonable agreement with MLWA theory for 2D-coupled dipoles, in
contrast to the single dipole case [Fig. 1]. This indicates that plasmon excitations in VO, nanodots were
derived from collective resonance based on the 2D regular arrays.
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2D nanodot arrays are based on two types of interactions,
namely, near-field and far-field couplings. The sharp AT
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