Imaging of Localized Surface Plasmon Polaritons by Apertureless Scanning Near-field Optical Microscopy

Nagaoka Univ. of Tech., S. Ikeda, Y. Cai, Q. Meng, T. Yokoyama, K. Shinozaki, T. Komatsu and T. Ishibashi

soushi_ikeda@mst.nagaokaut.ac.jp

1. Introduction

In the field of nanophotonics, localized surface plasmon polaritons (LSPPs) are important physical phenomena. One of the most important applications will be nano-size circularly polarized light generated by nano-structures such as a cross aperture antenna [1]. An imaging technique with high spatial resolution is essential for the analysis and the evaluation of LSPPs. In this presentation, we report on a measurement of LSPPs in Au patterned structures by an apertureless scanning near-field optical microscopy (a-SNOM) with a high spatial resolution of about 10 nm.

2. Experiment method

We used a He-Ne laser (HN-410P, NEOARK, Japan) with a wavelength of 633nm as a light source and silicon cantilevers (PRC-DF40P, Olympus, Japan) with curvature radius of 20 nm as optical probes. The s-polarized light illuminated with an angle of 45° inclined from the substrate normal to Au patterned structures with cross-shaped apertures prepared by focused ion beam (FIB). The scattered light from the near-field region was detected by a photomultiplier tube and measured using a lock-in amplifier (7280 DSP LOCK-IN AMPLIFIER, Signal Recovery).

3. Results and discussion

AFM and a SNOM images of a Au patterned structure with a cross-shaped aperture are shown in Fig.1. The arrow shown in Fig.1 represents a direction of electric field of an incident light with s-polarization. In the SNOM image, we obtain the strong intensity at the edges of the pattern. Strong electric fields at the edges were also observed in a simulation as show in Fig.2, which is due to LSPPs induced in the Au pattern. We consider that the strong intensity observed at the edges of the pattern in the SNOM image is due to LSPPs, since the simulated electric field distribution is similar to the SNOM image.

Acknowledgements

This research was partly supported by the National Institute of Information and Communications Technology (NICT) and KAKENHI Grants-in-Aid for Scientific Research (B) (26286023).

References