プラズマスパッタリングを用いたシリコンナノワイヤ形成

Silicon Nanowires Growth Using Plasma Sputtering

京大院工, ^O山田 郁美, 江利口 浩二, 斧 高一

Kyoto Univ., °Ikumi Yamada, Koji Eriguchi, Kouchi Ono

E-mail: yamada.ikumi.72a@st.kyoto-u.ac.jp

1. 研究背景

ナノワイヤは,直径数 nm-数百 nm,長さ数 µm 以上の微細構造物であり,その一次元構造に起因す る様々な特性を持つ^{1,2)}。ナノワイヤの実用化のためには,ナノワイヤを効率的に大量生産する手法が 必須となる。著者らは,ナノワイヤ形成の新しい手法として,高周波 (RF) マグネトロンスパッタリ ングを提案する。本手法は,原料の気化が必要ないためエネルギー効率が良い。また,他の手法と比 較して大口径化が容易であるという利点がある。本研究では、シリコン (Si) 基板及び表面に熱酸化膜 (SiO₂)の付いた Si 基板を用いて,様々な条件 (Au 膜厚,スパッタ時間,基板温度など)で実験を行い、 アスペクト比・密度の高い Si ナノワイヤが形成される条件について考察した。

2. 実験手順·実験手法

ナノワイヤ形成の触媒として Au を、ナノワイヤの原料として Si を用いた。まず、Au スパッタ装置 を用いて基板表面に Au 薄膜を生成する。次に、基板を熱処理することで Au 薄膜を粒状に集塊化させ る。最後に、Fig. 1 に示す RF マグネトロンスパッタリングチャンバを用いて Si スパッタリングを行う。 供給ガスとして、アルゴン及び水素を用いた。基板を加熱することで液体状になった Au の粒に、スパ ッタリングによって供給される Si 原子が溶け込み、合金となる。その後、Au-Si 合金中で過飽和とな った Si が Au と基板の間に析出し、Si ナノワイヤが形成される。形成されたナノワイヤの観察には、 走査型電子顕微鏡 (SEM) を用いた。

3. 実験結果

Fig. 2, Fig. 3 に, Si 基板および SiO₂1000 nm 付 Si 基板を用いた際に形成されるナノワイヤの SEM 像 をそれぞれ示す。スパッタ時間を 60 分,基板温度を 700℃,供給ガス流量を Ar: 5 sccm, H₂: 15 sccm,

圧力を 30 mTorr に固定し、Au 膜厚を、15, 20, 25, 30 nm (Si 基板), 5, 10, 15, 20 nm (SiO₂付基板) と変化させ, 実験を行った。 Si 基板上では Au 膜厚 25 nm, SiO₂付基板上では Au 膜厚 15 nm と 20 nm の条件で, アスペクト比・密度の高いナノワイヤが形 成された。

4. 結論

プラズマスパッタリングを用いた Si ナノワイヤ形成におい て、様々な条件依存性を調べた。実験結果より、Si 基板、SiO₂ 付基板ともに、Au 膜厚が比較的厚い条件において、アスペク ト比・密度の高いナノワイヤが形成されることがわかった。 [参考文献]

1) J. Ramanujam, D. Shiri, and A. Verma, Mater. Express 1 (2011) 105.

Fig. 1. RF マグネトロンスパッタリン グチャンバ

2) Z. Fan and J. G. Lu, Appl. Phys. Lett. 86 (2005) 032111.

Fig. 2. Si 基板上でのナノワイヤ形成の Au 膜厚依存

(a) 15 nm, (b) 20 nm, (c) 25 nm, (d) 30 nm

Fig. 3. SiO₂付基板上でのナノワイヤ形成の Au 膜厚依存(a) 5 nm, (b) 10 nm, (c) 15 nm, (d) 20 nm