20a-A20-15

Si ウェーハの曲げ強度に対する表層窒素濃度の影響

Effect of nitrogen concentration in surface layer on the bending strength of silicon wafers

グローバルウェーハズ・ジャパン株式会社 技術部基盤技術グループ¹,大阪大学 大学院基礎工学研究科² °須藤治生¹,荒木浩司¹,日高洋美¹,荒木延恵¹,竹内正太郎²,中村芳明²,酒井朗²,泉妻宏治¹

Base Technology, Technology, GlobalWafers Japan Co.,Ltd.¹,

Department of Systems Innovation, Graduate School of Engineering Science Osaka Univ.²,

[°]Haruo Sudo¹, Koji Araki¹, Hiromi Hidaka¹, Nobue Araki¹, Shotaro Takeuchi², Yoshiaki Nakamura²,

Akira Sakai², and Koji Izunome¹

E-mail: Haruo_Sudo@sas-globalwafers.co.jp

【緒言】

近年、デバイスの微細化が限界に近づくなかで、特性向上を図る方法の一つとして、3次元積層構造化が検討されている。3次元積層構造は、その製造過程において、Siウェーハの薄厚化が必要となるため、特に曲げ変形に対する機械的強度(以下、曲げ強度)が、今後重要となる可能性がある。曲げ変形におけるSiウェーハの深さ方向の応力は、表裏面側ほど高い傾向がある^[1]。このため、曲げ強度は、Siウェーハ表層の特性影響を大きく受けるものと推測される。本研究では、Siの機械的強度を向上させる効果が報告されている窒素^[2]に注目し、Siウェーハ表層の窒素をRapid Thermal Nitridation(RTN)で高濃度化し、曲げ強度に対する影響を調査した。

【実験方法】

チョクラルスキー法で育成した φ 300mm、P タイプ(ボロンドープ)、窒素ノンドープの面方位(001)Si ウェー ハを用いた。酸素濃度は、 1.2×10^{18} atoms/cm³ (Old ASTM 値)であった。Si ウェーハを、1100 C ~ 1300 C で RTN 処理した。表面に形成された熱窒化膜を除去するため、全てのサンプルの表裏面を 1µm 研磨した。SIMS (Secondary Ion Mass Spectrometry)で最大深さ約 80µm までの窒素濃度を測定した。続いて、各 Si ウェーハを劈 開して、長さ 60mm×幅 13mm×厚さ 0.77mm の曲げ試験片を作製した。その後、アルバック理工社製の応力印 加型高温観察歪測定装置(MS-F-TME2/7000)を用いて、N₂雰囲気下、1000 C、荷重速度 0.1mm/min で 3 点曲げ 試験を行った。得られた応力-歪曲線より各試験片の最大分解せん断応力(以下、せん断応力)^[3]を比較した。

【結果】

Fig.1 に、SIMS 測定による RTN 処理後の表層窒素濃度プ ロファイル(Fig.1 中 plot 表記)を示す。RTN 処理無しのサン プルでは、窒素濃度は検出下限(3×10¹⁴atoms/cm³)以下であっ た。これに対し、RTN 処理したサンプルでは、深さ約80μm 以下で検出下限以上の窒素が検出され、高温処理ほど高濃 度であった。Fig.1 には、SIMS 測定による窒素濃度をもと に、Si 基板中に含まれる窒素濃度を 1.0×10¹²atoms/cm³と仮 定し、深さ 200µm までの窒素濃度プロファイルを試算^[4]し た結果(Fig.1 中 line 表記)も記載した。この各試算プロファ イルから深さ 200µm までの平均窒素濃度を算出し、3 点曲 げ試験により得られたせん断応力との関係を整理した結果 を Fig.2 に示す。せん断応力は、表層の窒素濃度に依存して 向上する傾向が明確に見られた。表層の平均窒素濃度を 2.0×10¹⁵ atoms/cm³ まで増加させたサンプルでは、RTN 処理 無しのサンプルに比べて、せん断応力が約4MPa向上した。 曲げ変形において、応力負荷が大きい Si ウェーハ表層の窒 素濃度を増加させることにより、効果的に曲げ強度を向上 できる可能性が示唆された。

参考文献

[1]日比野文雄 曲げ変形の物理学 p.14-15 (2010).

[2]K. Sumino, et. al.; J. Appl. Phys. 54 (9), 1983.

[3]藤井修 他, 日本機械学会材料力学部門講演会講演論文集 Vol.B 1995.

[4]H. Asazu, et. al. ; Thin Solid Films 557 (2014) 106-109.

Fig.1 Nitrogen concentration in surface layer after RTN.

Fig.2 Relationship between maximum resolved shear stress and average nitrogen concentration in surface layer.