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   Domain wall (DW) motion in materials with perpendicular easy axis has been intensively studied in 

recent years because of its potential to realize fast magnetization reversal with a low current. In case that 

magnetic field (H) or current (I) much less than the threshold is applied to a DW, the DW is moved by 

thermal activation while interacting with the disorder in the material [1]. This sub-threshold phenomenon 

called “creep” has gathered considerable interest because of rich information about the mechanism for the 

DW motion. Since Ta/CoFeB/MgO is a promising material system for DW applications [2], we study the 

DW creep motion in Ta/CoFeB/MgO wires driven by both H and I. 

   The stack structure is Si/SiO2 sub/ Ta (0.5 nm)/ CoFeB (1.2 nm)/ MgO (1.5 nm)/ Ta (1 nm). The stack is 

patterned into 5 µm wide wires by photolithography and Ar ion milling. The DW motion is observed by 

magneto-optic Kerr effect (MOKE) microscope after applying H or I pulses. 

   Figure 1 shows the DW velocity (v) vs. applied current density (J) or H. The non-linearity of the curve 

implies that the motion is in the creep regime. In the creep regime, v follows a scaling relation with respect 

to the H or I:          
 

  
 
  

 
 
 

 , where U is the energy barrier, f is the applied H or I and fC is their 

critical value. The exponent µ reflects the mechanism of DW motion [3,4]. From the fitting shown in the 

insets in Fig. 1, µ is determined to be ~ 0.27 for the H driven case while it is ~ 0.6 for the I driven case. 

This is the first report of different  for the H and the I driven case observed for a metallic system. The 

result can possibly be interpreted in terms of the nature of the disorder and the torque acting on the DW. 
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Fig. 1: DW velocity (v) as a function of current density (a) and 

magnetic field (b). Insets show standard error curve for 

determination of creep exponent. 
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