Theory of spin torque resonance for magnetic insulators

Takahiro Chiba¹, Gerrit E. W. Bauer,¹,²,³ and Saburo Takahashi¹

IMR, Tohoku University¹, WPI-AIMR², Kavli Institute of NanoScience, TU Delft³
E-mail: t.chiba@imr.tohoku.ac.jp

The spin Hall effect (SHE) refers to a spin current induced in the transverse direction by a charge current through a nonmagnetic material with spin-orbit interaction. The efficiency of the SHE is measured by the spin Hall angle defined by the ratio, \( \theta_{SH} = J_s/J_c \), where \( J_s \) is the transverse spin current density induced by a charge current density \( J_c \). Recent experiments¹,² demonstrate ferromagnetic resonance in bilayer thin films made from metallic ferromagnets (FM) and nonmagnetic metals (N) with spin-orbit interaction, which is excited by a resonant spin transfer torque generated via the SHE by an AC current bias over the sample (ST-FMR). The resonance is detected by a DC voltage created by down-conversion due to the anisotropic magnetoresistance (AMR) in the FM, i.e. the spin torque diode effect.³ A complication for all-metal systems is the current that flows through the ferromagnet which makes an accurate modelling difficult. This complication can be avoided by working with insulating magnets such as yttrium iron garnet (YIG) and employ the spin Hall magnetoresistance (SMR)⁴ instead of the AMR in the system sketched in Fig. 1. We present the computed magnetization dynamics and DC voltage as a function of frequency in bilayer thin films of YIG|N with N being Pt⁵ and Ta.² Experimental confirmation of this effect would yield important additional information on the spin-transfer torque-induced magnetization dynamics in YIG as discovered by Kajiwara et al.⁵

References