Structural, magnetic and transport properties of Ni$_2$MnAl thin films prepared by magnetron sputtering

IMR, Tohoku Univ. 1, NIMS 2, KEK 3, Tomoki Tsuchiya1, Tomoko Sugiyama1, Takahide Kubota1, Masaki Mizuguchi1, Tetsuro Ueno2, Nobuhito Inami3, Kanta Ono3, and Koki Takanashi1

E-mail: t.tomoki@imr.tohoku.ac.jp

Mn$_3$Ir is an antiferromagnetic material widely used in so-called spin valve structures. The spin valve structure plays an important role for enhancing sensitivity of magnetic sensors such as reading heads of hard disc drives (HDDs). Mn$_3$Ir has attractive properties of large exchange bias field and high blocking temperature, however high-cost of Ir will be a critical issue in near future for its scarcity. In this work, we focused on an anti-ferromagnetic Heusler alloy Ni$_2$MnAl for the replacement of Mn$_3$Ir. Ni$_2$MnAl is known to be an antiferromagnetic phase when the structure is B2 phase [1]. There have been few reports on fabrication of Ni$_2$MnAl thin films therefore structural and magnetic property of Ni$_2$MnAl thin films were investigated in this study.

Ni$_2$MnAl thin films were prepared on MgO (100) substrates by magnetron sputtering. Film composition was adjusted to be a stoichiometric composition by co-sputtering technique. Structural, magnetic, and transport properties of the films were measured by using x-ray diffractometer (XRD) and van der Paw technique, respectively.

Fig. 1 shows the XRD result of the samples deposited at different substrate temperatures (T_{sub}). Peak intensity of Ni$_2$MnAl increases with increasing T_{sub} and (002) diffraction which comes from B2 phase was confirmed for the samples prepared at T_{sub} over 300°C. Fig. 2 shows measurement temperature dependence of electrical resistivity for the sample of $T_{\text{sub}} = 500$°C. The graph has an inflection point at 250K which implies magnetic transition of the Ni$_2$MnAl film. Magnetic properties measured by VSM and synchrotron x-ray source will be discussed in the presentation.

This work was supported by HARFIR (SICORP-EU) from the JST.