17a-E7-55

Transport measurements toward gate-controlled transition between persistent and inverse persistent spin helix states

Tohoku Univ.

^OKohei Yoshizumi, Atsuya Sasaki, Makoto Kohda, and Junsaku Nitta

Email: b0tb4128@s.tohoku.ac.jp

Introduction: In semiconductor spintronics, electrical control of spin and suppression of spin relaxation are prerequisite techniques. In III-V compound semiconductors, there are two types of spin-orbit interactions (SOIs), *i.e.*, the Rashba SOI α and the Dresselhaus SOI β . When α is equal to β , spin rotational symmetry is preserved and results in long spin relaxation time due to the complete suppression of the D'yakonov-Perel' spin relaxation mechanism [1]. This is the so-called persistent spin helix state (PSH $\alpha = \beta$) [2]. In addition to the PSH, an inverse persistent spin helix state (*i*-PSH) with long spin relaxation time can be realized by making $-\alpha = \beta$. If we control these states by gate voltage, the spin complimentary FET will be possible [3]. Here, we tried to realize a gate controlled transition between the PSH and *i*-PSH states from magneto-transport measurements.

Method: A gate-fitted Hall bar was fabricated by using an InGaAs HEMT structure grown on InP (001) substrate (See Fig: 1(a)). The InGaAs based symmetric quantum well structure was carefully designed to make α close to β . We measured magneto-conductance (MC) by varying gate voltage (by controlling α) at 1.7K since short and long spin relaxation times result in weak anti-localization (WAL) and weak localization (WL), respectively.

Result: A transition from WAL to WL is observed at $N_s = 1.54 \times 10^{12} \text{ cm}^{-2}$ by decreasing N_s (See Fig: 1(b)). We calculate the strengths of Rashba SOI α and Dresselhaus SOI β by using the $k \cdot p$ perturbation method (See Fig: 1(c)). By comparing with the calculation, the observed transition suggests the PSH and *i*-PSH states will be realized around $N_s = 1.5 \times 10^{12} \text{ cm}^{-2}$ and 0.4 x 10^{12} cm^{-2} , respectively. However, WAL (β dominant region) and WL ($-\alpha = \beta$: *i*-PSH) are not observed by further decrease in N_s . This is probably because the measured temperature is still high so that the phase coherence length is shorter than the spin relaxation length, which yields the WL under the β dominant region. We will conduct magneto-conductance measurements at lower temperature such as 0.3K in order to enhance the phase coherence length.

Figure 1: (a) Schematic layer structure used in the present study. (b) Magneto-conductance profiles (in units of e^2/h) measured at different gate voltages. (c) Expected SOI strengths calculated by the $k \cdot p$ perturbation method.

M. I. D' yakonov and V. I. Perel , Sov. Phys. Solid State 13, 3023 (1971).
J. Schlieman and D. Loss, Phys. Rev. B 68, 165311 (2003).
Y. Kunihashi, M. Kohda, H. Sanada, H. Gotoh, T. Sogawa, and J. Nitta ,Appl. Phys. Lett. 100,113502 (2012).