17a-E7-56

All electrical determination of Rashba and Dresselhaus spin-orbit interactions in InGaAs narrow wires

Tohoku Univ.¹, Universität Regensburg², [°]A. Sasaki¹, Y. Kunihashi¹, M. Kohda¹, T. Bauernfeind², T. Dollinger², K. Richter² and J. Nitta¹ E-mail: b2tm5311@s.tohoku.ac.jp

In the field of spintronics, electrical control of spin and enhancement of spin lifetime are prerequisite techniques. In III-V semiconductor heterostructures, when strengths of two spin-orbit interactions (SOI), the Rashba SOI α and the Dresselhaus SOI β are equal to each other, coherent spin propagation is realized and spin relaxation due to the D'yakonov-Perel' mechanism is completely suppressed [1]. This is the so-called persistent spin helix (PSH) state [2]. To realize and apply the PSH state, the electrical determination of α and β in a gated sample is essential. In this study, we have successfully evaluated the absolute value of α and β .

A sample used was an $In_{0.52}Al_{0.48}As / In_{0.7}Ga_{0.3}As / In_{0.52}Al_{0.48}As$ quantum well, which was epitaxially grown on InP substrate and processed into narrow wire structures (Length $L = 200 \mu m$, Width W = 750 nm, Number of wires N = 100) aligned in [100] direction. We measured out-plane magneto-conductance called weak localization (WL) (Fig. 1a) by varying an in-plane magnetic field $|\mathbf{B}_{in}|$ at T = 1.7 K.

The method to deduce the SOI parameters is based on the theoretical proposal that the WL exhibits minimum amplitude with maximum spin relaxation rate when the in-plane magnetic field $|\mathbf{B}_{in}|$ is very close to the effective magnetic field $|\mathbf{B}_{eff}|$ induced by two SOIs [3]. We experimentally observe the $|\mathbf{B}_{in}|$ dependence of the 'difference of the WL amplitudes $G' = \Delta \sigma (\theta \neq 0^\circ) - \Delta \sigma (\theta = 0^\circ)$ ' at $V_g = -5V$ (Carrier density $N_s = 2.16 \times 10^{-12} \text{ cm}^{-2}$), where $\Delta \sigma$ is a WL amplitude and θ is the angle between \mathbf{B}_{in} and \mathbf{B}_{eff} (Fig. 1b). |G'| corresponds to how much WL amplitude is suppressed by the additional spin relaxation, which becomes maximum at dip position with the ratio $|\mathbf{B}_{in}|/|\mathbf{B}_{eff}| \approx 1$. From the dip position in Fig. 1b, we estimate $|\mathbf{B}_{eff}| \approx 1.55T$. Moreover, using the estimated $|\mathbf{B}_{eff}|$ values together with the ratio α/β deduced by our proposed method [3], it is possible to evaluate the absolute values of α and β .

- [1] M. I. D' yakonov and V. I. Perel , Sov. Phys. Solid State 13, 3023 (1971).
- [2] J. Schlieman and D. Loss, Phys. Rev. B 68, 165311 (2003).
- [3] M. Scheid et al., Phys. Rev. Lett. 101, 266401 (2008).

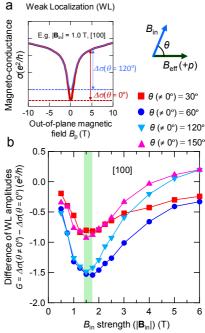


Figure 1: a. measured WL in [100] direction with $|\mathbf{B}_{in}| = 1T$ in different θ . b. The difference of WL amplitudes $G' = \Delta \sigma (\theta \neq 0^{\circ}) - \Delta \sigma (\theta = 0^{\circ})$ as a function of $|\mathbf{B}_{in}|$. Each angle $\theta \neq 0^{\circ}$ was set as $\theta = 30^{\circ}$, 60°, 120° and 150°.