Source Structure of High-Order Harmonics from Relativistic Electron Spikes JAEA ¹, P. N. Lebedev Physical Institute ², Rutherford Appleton Laboratory ³, The Graduate School for the Creation of New Photonics Industries 4 $^{\circ}$ A. S. Pirozhkov 1 , M. Kando 1 , T. Zh. Esirkepov 1 , T. A. Pikuz 1 , A. Ya. Faenov 1 , K. Ogura 1 , Y. Hayashi 1 , H. Kotaki¹, E. N. Ragozin², D. Neely³, H. Kiriyama¹, T. Shimomura¹, M. Tanoue¹, Y. Nakai¹, M. Okamoto¹, K. Torimoto¹, T. Sato¹, S. Kondo¹, S. Kanazawa¹, J. K. Koga¹, Y. Fukuda¹, M. Nishikino¹, T. Imazono¹, N. Hasegawa¹, T. Kawachi¹, H. Daido¹, Y. Kato⁴, P. R. Bolton¹, S. V. Bulanov¹, and K. Kondo¹ E-mail: pirozhkov.alexander@jaea.go.jp We have recently discovered a new regime of relativistic high-order harmonic generation from gas jet targets driven by multi-terawatt relativistic-irradiance ($>10^{18}$ W/cm²) femtosecond lasers (\sim 30-50 fs) [1] and suggested a new model of high harmonics generation by plasma flow catastrophes created by the laser pulse. The resulting extremely sharp, structurally stable, oscillating electron spikes coherently emit bright x-ray radiation. In recent experiments with the J-KAREN laser [2] we imaged the source of harmonics with photon energies from 60 to 100 eV onto a LiF crystal detector [3], which provides sub-µm resolution. The images reveal that the harmonics are emitted from two point-like regions with size smaller than a micron, in accordance with the prediction of our relativistic electron spikes model. - 1. A. S. Pirozhkov, *et al.*, "Soft-X-Ray Harmonic Comb from Relativistic Electron Spikes," *Phys. Rev. Lett.* **108** (13), 135004-5 (2012). - 2. H. Kiriyama, *et al.*, "High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system," *Opt. Lett.* **35** (10), 1497-1499 (2010). - 3. T. Pikuz, *et al.*, "Optical features of a soft X-ray imaging detector based on photoluminescence point defects in LiF crystals irradiated by Free Electron Laser pulses," *Optics Express* **20** (4), 3424 (2012).