カスケード型長周期光ファイバグレーティングを用いた 高感度固体振動センシング

Highly sensitive mechanical vibration sensing by using cascaded long period fiber grating 防衛大学校 通信工学科 竹内誠, 〇月田統, 田中哲,

手倉森新伍, 内村良太郎, 和田篤, 髙橋信明

National Defense Academy Makoto Takeuchi, Osamu Tsukida, Satoshi Tanaka, Shingo Tekuramori, Ryoutarou Uchimura, Atsushi Wada, Nobuaki Takahashi E-mail: em51015@nda.ac.jp

これまでわれわれは、長周期光ファイバグレーティング (LPG) を用いた固体振動センサなどの各種センサを提案し, それらの高性能化に関する検討を行ってきた^[1-3]. 特に強度変 調方式に基づく LPG 振動センサにおいては、1本の光ファイ バに同一の LPG を 2 つ縦続に形成したカスケード型 LPG を検 出素子として利用することで、センサシステムの応答度の向上 が可能であることを実験的に提示した[2,3]. 本研究では、カス ケード型 LPG を検出素子とした高感度な固体振動センシング を目的とし、微小振動計測実験を行った. 実験では、検出可能 な最小振動に着目し, 高感度な固体振動センシングに関して検 討を行った.

図1に示すようにカスケード型 LPG は1本の光ファイバに 同一条件で作製した2つのLPGが間隔(D)をあけて構成され、 LPG のモード間の結合を利用したマッハ・ツェンダ型の干渉計 を光ファイバ内に形成している. LPG では, コア (LPol) およ びクラッドモード(LP_{0m})間に結合が生じ、次式で表される位 相整合条件を満たす特定の波長 $(\lambda_p^{(m)})$ において損失ピーク (図 2:破線) が現れる.

$$\mathcal{A}_{\mathrm{p}}^{(m)} = (n_{\mathrm{core,eff}} - n_{\mathrm{cladeff}}^{(m)}) \Lambda \tag{1}$$

ここで、 $n_{\text{core, eff}}$ 、 $n^{(m)}_{\text{core, eff}}$ は、コア、およびm次のクラッドモ ードに対する実効屈折率、 Λ はグレーティング周期である.し たがってカスケード型 LPG への入射光は,入射側 (1つ目) の LPG においてコア、およびm次のクラッドモードに分岐され る. 分岐された光波は各モードで間隔(D)を伝搬したのち, 出射側(2つ目)のLPGにおいて再結合を生じる. その際, 各 モードで伝搬した光波には位相差が生じている. ゆえに入射光 に対する透過率スペクトルには、図2(実線)で示すように、 干渉効果による急峻なチャネルスペクトルが現れる[4].

このようなファイバを振動センサとして用いる場合, 透過率 スペクトルが、振動によって波長方向にシフトすることを利用 している. 本研究では、このスペクトルシフトを透過光の強度 として検出する強度変調方式に基づいてセンサシステムを構 築した. 図3に本方式の原理を示す. 本方式では, 透過率スペ クトルの傾斜部に、レーザのような狭帯域光源を同調させる. 振動のような動的ひずみに応じて透過率スペクトルが波長方 向にシフトすると、光源の入射波長おける透過率が変化するた め、振動を透過光の強度変化として検出することができる. ま た,本方式におけるセンサの感度は,透過率スペクトルの傾斜

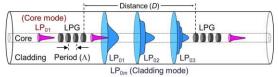


図1 カスケード型 LPG の概念図

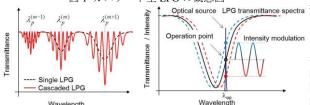
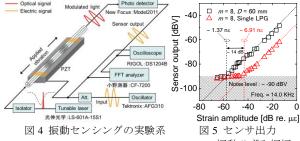



図2透過率スペクトルの概念図 図3強度変調方式の原理

vs. 振動ひずみ振幅

部の傾きと, ひずみに対する透過率スペクトルの波長シフト量 に比例するため $^{[1]}$,カスケード型 LPG の急峻なスペクトル形状 を利用することで、センサシステムの高感度化が期待できる.

実験では、カスケード型 LPG について透過率スペクトルの ひずみに対する依存性を評価したのち, 振動センシングの実証 実験を行った. 静ひずみ実験では, 透過率スペクトルが形状を ほぼ一定に保ったまま, 印加ひずみにほぼ比例して長波長側に シフトすることを確認し、透過率スペクトルの波長シフトの静 ひずみ依存性はm=6, 8のものに対してそれぞれ 0.61 pm/με, 2.3 pm/με と見積もられ、高次のクラッドモードの方がひずみ 対する依存性が高く、ここでは高次 (m=8) のひずみ依存性 が低次 (m=6) のものに対して約2.7倍の値を示した.一方, ひずみ依存性の LPG 間隔 (D) による違いは、ほとんど確認さ れず、単一およびいずれのカスケード型 LPG においても同程 度の値を示した.

振動センシングの実証実験では、図4に示すように、作製し たカスケード型 LPG、波長可変レーザ、圧電素子 (PZT)、発 振器、光検出器、オシロスコープ、および、FFT アナライザを 用いて実験系を構成した. カスケード型 LPG の両端を PZT に 接着し、発振器からの正弦波電圧(周波数 14.0 kHz) により PZT を駆動し、光ファイバの長さ方向に対して動的ひずみ、す なわち振動を印加する. 印加振動に応じて強度変調を受けた入 射光は光検出器で電気信号に変換されたのち, オシロスコープ および FFT アナライザにより実時間で振動に応じたセンシン グ信号が観測される. 図 5 に PZT への印加電圧から見積った センサへの振動ひずみ振幅に対するセンサ出力の依存性を示 す. ここでは、m=8、D=60 mm のカスケード型 LPG を用い た結果を示しており、比較のため、単一の LPG を用いた結果 についても併せて示してある. 図に示すように、振動ひずみ振 幅に対してセンサ出力が線形応答を示しているとともに, LPG をカスケード型にすることにより, 応答度の改善, ならびに検 出可能な最小振動ひずみの向上が確認できる. また, 本研究で 試作した最も高感度であったm=8,D=60mmのカスケード 型 LPG を検出素子として用いた実験においては、約1.4 nsの 微小振動ひずみが検出可能であり、カスケード型 LPG を用い た高感度な固体振動センシングが可能であることを実験的に sity modulation 明らかにした.

参考文献

- [1] 田中 他: 第71回秋季応物予稿集(6a-M-9), 05-150 (2010).
- [2] 竹内 他: 第 73 回秋季応物予稿集(13p-C-6), 05-126 (2012).
- [3] 月田 他: 第74回秋季応物予稿集(17p-A8-7), 05-118(2013).
- [4] B. H. Lee and J. Nishii: Appl. Opt. 38, 34501 (1999).