Phase separation of MOVPE-grown thick (~1 µm) In$_x$Ga$_{1-x}$N ($x\sim0.3$) (I)

Simultaneous emergence of metallic In-Ga and GaN-rich InGaN

Univ. of Fukui1, JST-CREST2, The Kansai Electric Power Co.3, Osaka City Univ.4

Md. Tanvir Hasan1,2, A. Mihara1,2, N. Narita3, N. Shigekawa4,1,2, A. Yamamoto1,2

E-mail: tan_vir_bd@yahoo.com

Introduction: According to the phase diagram of InGaN proposed by Ho and Stringfellow [1], spinodal decomposition should result in the simultaneous formation of InN-rich InGaN and GaN-rich InGaN. However, Doppalapudi et al. [2] did not find such simultaneous formation of the two phases. They found only InN-rich In$_{0.15}$Ga$_{0.85}$N ($x\sim0.97$) in as-grown In$_{0.15}$Ga$_{0.85}$N film, while only GaN-rich InGaN (20–34.5°) was observed after the annealing of the film at 675°C. Thus, phase separation of InGaN has not yet to been completely understood, in spite of many works. In this work, we report the simultaneous formation of metallic In-Ga and GaN-rich InGaN as a result of phase separation of MOVPE In$_x$Ga$_{1-x}$N at 650°C.

Experiments: The growth of In$_x$Ga$_{1-x}$N alloys ($x\sim0.3$) was conducted using a MOVPE system. TEG, TMI, and NH$_3$ were used for Ga, In, and N sources, respectively. Growth pressure was fixed at 150 Torr. Growth rate of InGaN was about 0.7 µm/h. The growth process is shown Fig.1 (a). After the annealing of AlN/Si substrate wafers at 950°C in NH$_3$, an In$_{0.34}$Ga$_{0.66}$N ($x=0.34$) layer was deposited at 650°C for 60 min (1st InGaN growth) on three wafers. After cooling down the wafers to RT, Sample A was taken out. Then, the second In$_{0.34}$Ga$_{0.66}$N growth was performed for 30 min at 650°C. Again, one of the two wafers (Sample B) was taken out. Finally, the remaining wafer was annealed at 650°C in NH$_3$ for 30 min (Sample C).

Results and discussion: Fig.1 (b) shows XRD 2θ/ω profiles for the Samples A, B, and C. Note that InN content in the epitaxial In$_{0.34}$Ga$_{0.66}$N was decreased from 0.34 to 0.32 when growth time was increased from 60 to 90 min. When film thickness was increased to 1.1µm (90 min for Sample B) under the same growth conditions, new three peaks appeared as shown in Fig. 1(b), indicating the occurrence of phase separation. These new peaks at 2θ~31.5°, 2θ~32.9° and 2θ~34.5° are very close to those for InN (0002), metallic In (101) and GaN (002), respectively. These peaks at 2θ~31.5° and 2θ~34.5° are not due to pure InN and GaN, respectively. Thus, they are denoted as InN-rich In$_{0.34}$Ga$_{0.66}$N (0002) and GaN-rich In$_{0.34}$Ga$_{0.66}$N (0002). By the precise measurement of lattice constant by XRD, y and z were determined to be 0.02-0.03 and 0.02-0.05, respectively. The InN composition~0.03 in the GaN-rich InGaN is in good agreement with the solubility of InN in GaN at 650°C predicted by Ho and Stringfellow [1]. The results in Fig. 1(b) show that the epitaxial In$_{0.34}$Ga$_{0.66}$N ($x\sim0.3$) is consumed to form the Ga-rich In$_{0.34}$Ga$_{0.66}$N and metallic In$_x$Ga$_{1-x}$N. Thus, using AlN/Si(111) substrates, we have clearly observed the phase separation of epitaxial In$_{0.34}$Ga$_{0.66}$N into metallic In-Ga and GaN-rich In$_{0.34}$Ga$_{0.66}$N. It should be pointed out that the selection of substrate and/or interlayer for InGaN growth is critical issue in the observation of such phase separation.

Conclusion: we have clearly observed the simultaneous formation of metallic In-Ga and Ga-rich InGaN during the MOVPE growth of In$_{0.34}$Ga$_{0.66}$N ($x\sim0.3$) at 650°C, as a result of phase separation. Metallic In-Ga is formed through the In-rich InGaN due to the thermal instability of In-rich InGaN.

This work was supported in part by “Creative research for clean energy generation using solar energy” project in CREST programs of JST, Japan.