17p-E16-5

ナノワイヤ移動により波長選択可能な PhC ナノ共振器

Semiconductor nanowire induced PhC nanocavity with selectable resonant wavelength

^O横尾 篤^{1,2}、滝口 雅人^{1,2}、ビロウォスト ダナン^{1,2}、章 国強²、舘野 功太²、

倉持 栄一^{1,2}、谷山 秀昭^{1,2}、納富 雅也^{1,2}

¹NTT ナノフォトニクスセンタ,²NTT 物性科学基礎研

^OA. Yokoo^{1,2}, M. Takiguchi^{1,2}, M. D. Birowosuto^{1,2}, G. Zhang², K. Tateno²,

E. Kuramochi^{1,2}, H. Taniyama^{1,2}, M. Notomi^{1,2}

¹NTT Nanophotonics Center, ²NTT Basic Research Laboratories

E-mail: yokoo.atsushi@lab.ntt.co.jp

[はじめに]フォトニック結晶(PhC)共振器は、強い 光の閉じ込め効果を持つ、PhC 機能性デバイスの基本 構成要素の一つである。EB リソグラフィとエッチン グプロセスによる PhC 構造形成後に、追加的な加工を 行って共振波長をチューニングすることや、新たな共 振器を形成することは、PhC 光回路形成の自由度向上 に寄与する。また、シリコン PhC 構造作製後に異種材 料を導入すれば、発光機能などを追加的に付与するこ とができる。これまで、我々は、PhC 線欠陥への AFM リソグラフィによる酸化物パタン形成を使った、共振 器の新規形成を示し¹⁾、さらに、シリコン PhC の線欠 陥上トレンチ構造に半導体ナノワイヤを導入すること により、新たな共振器が形成できることを示した 2,3)。 今回、トレンチに沿って PhC 格子定数を変化させた構 造を用いることで、トレンチ内ナノワイヤの移動によ って、PhC-ナノワイヤ共振器の共振波長を選択可能で あることを確認した。

[実験と結果] SOI 基板に対する EB リソグラフィと エッチングプロセスにより、線欠陥上にトレンチ構造 をもつシリコン PhC 構造を作製した。線欠陥上のトレ ンチ幅は 150 nm、深さは 75 nm である。トレンチに 沿って PhC 周期を 4 段階に変化させている。MOVPE 法により成長した InAsP ナノワイヤ⁴⁾(長さ:2.3 μ m、 直径:117 nm)を AFM マニピュレーションによって PhC 構造表面で移動させ、トレンチ内に配置した(図 1)。ナノワイヤ移動時の探針移動速度は 50 nm/sec で ある。作製したサンプルの模式図を図 2(a)に示す。 作製されたサンプルにおいて、サンプル上面からの光 励起によるナノワイヤからの発光を上面から観測し、

図 1AFM マニピュレーションによるナノワイヤ導入

線欠陥上に新たに共振器が形成されたことを示す発光 ピークを確認した。AFM マニピュレーションにより トレンチ内のナノワイヤを異なる PhC 格子定数をも つ部位へと移動させた様子を図 2(b)に示す。ナノワイ ヤからの発光を観測した結果、図 3 のように発光ピー ク波長が PhC 格子定数に応じて変化することが確認 され、本構造により、PhC 共振器の共振波長をポスト プロセスにより選択可能であることが示された。

(1) A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, Nano Lett., 11, 3634 (2011)

(2) M. D. Birowosuto, A. Yokoo, H. Taniyama,

E. Kuramochi, M. Takiguchi, M. Notomi, J. Appl. Phys. 112, 113106 (2012).

(3) M. D. Birowosuto, A. Yokoo, H. Taniyama,

E. Kuramochi, M. Takiguchi, M. Notomi, Nat. Mater., in press.

(4) K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, Nano Lett. 12, 2888–2893 (2012).

図 2 線欠陥上トレンチにナノワイヤを導入した PhC
(a) 模式図
(b) トレンチ内での移動により PhC 格子
定数の異なる部位に配置されたナノワイヤの AFM 像

図3線欠陥上トレンチ内での移動によりPhC格子定数の異 なる部位に配置されたナノワイヤからの発光スペク トル