17p-F4-11

希ガス及び分子性クラスターイオンビーム照射による アミノ酸分子の二次イオン測定

Secondary ion measurement of amino acid molecules with noble gases and molecule cluster ion beams

兵庫県大院工 。井原一誠,盛谷浩右,金井政典,乾徳夫,持地広造

Univ. of Hyogo, °Issei Ihara, Kousuke Moritani, Masanori Kanai, Norio Inui and Kozo Mochiji E-mail: es13b007@steng.u-hyogo.ac.jp

ガスクラスターイオンビーム(gas cluster ion beam; GCIB)では、1原子当たり数 eV 程度という低エネル ギーの原子を、数 nm²程度の領域に数千個という超 高密度で照射することができるため、高分子の分子 内化学結合の切断を抑制したスパッタリングが可能 である。これまで、我々はサイズを選別した Ar-GCIB をプローブとした SIMS 装置を開発し[1]、クラスタ ーを構成する1原子当たりの平均運動エネルギーを 調整することで試料分子の解離を抑え、タンパク質 などの高分子を非解離でスパッタできることを示し てきた[2]。本手法を幅広く応用していくためには分 子イオン収率の向上が重要となる。そこで本研究で は、アルゴン(Ar)、クリプトン(Kr)、メタン(CH₄)、 メタノール(CH₃OH)、水(H₂O)の GCIB を一次イオン としてアスパラギン酸(Asp)薄膜試料の SIMS 測定を 行い、一次イオン種による二次イオン強度の違いを 比較した。

ガスクラスターは、オリフィス径 0.1 mm、拡散部 長 60 mm の真鍮製コニカルノズルから真空中に気 体を断熱膨張させ生成した。CH₄クラスターは、90% の Ar でシードして生成した。CH₃OH 及び H₂O クラ スターは、Ar をキャリアガスとしてバブリング法に より生成した。生成したクラスターの化学組成は測 定チェンバーに設置した四重極質量分析計(QMS)に より決定した。薄膜試料は、蒸留水を溶媒とした溶 液(濃度 1mg/ml)の Asp (分子量:133)を、プラズマ エッチング処理を施したシリコン(Si)基板上に 20 µl 滴下した後真空乾燥して作製した。

Fig 1.に Ar₁₅₀₀⁺、(CH₃OH)₁₅₀₀⁺、(H₂O)₁₅₀₀⁺、を加速 電圧5kVでAsp 試料に照射したときの二次イオンス ペクトルを示す。Asp 分子イオン([M+H]+)のピーク強 度は Ar₁₅₀₀⁺照射時の強度(Counts/nA)を1として規格 化している。図に示すように、[M+H]⁺の強度は、 Ar₁₅₀₀⁺照射と比較して、(CH₃OH)₁₅₀₀⁺照射で約3倍、 (H₂O)₁₅₀₀⁺照射で約8倍に増加した。次に加速電圧5 kV でクラスターのサイズ(構成分子数)を変え、1 分子当たり平均運動エネルギー(E_{molecule})を調整し た GCIB を Asp 試料に照射し、[M+H]⁺ピーク強度の 変化を調べた。(Fig 2.) 希ガス(Ar、Kr)クラスター 照射と比較して、CH4および CH3OH クラスター照射 では、強度は最大3倍程度まで増加したが、どちら の場合も $E_{molecule}$ が小さくなるほど $[M+H]^+$ の強度は 減少した。一方で、H2Oクラスター照射では、Emolecule が小さくなるほど[M+H]⁺の強度は増加することがわ かった。この結果は、一次イオンからプロトンが供 給されることにより、二次イオン化率が増加し、分 子イオン収率が向上する可能性を示唆している。講 演ではこれらのクラスターイオンによるスパッタの メカニズムについて議論する。

Fig 1. Asparatic acid (m/z=133) SIMS using Ar_{1500}^+ (a), (CH₃OH)₁₅₀₀⁺ (b) and (H₂O)₁₅₀₀⁺ (c)at V_a=5 kV.

- Fig 2. Secondary ion emission of [M+H]⁺from the Aspartic acid films using Kr, Ar, and CH₄, CH₃OH, and H₂O cluster ion beams at V_a=5 kV. Dashed lines are eye guides.
 - [1] K.Moritani, et al. Appl. Surf. Sci., 255 (2008) 948.
 - [2] K.Mochiji, et al. Rapid Commun. MassSpectrom, 23, 648-652, (2009)