17p-F4-6

ガスクラスターイオンビームによる Ru 薄膜の平坦化(I)

Smoothing of Ru thin film with Gas Cluster Ion Beam (I)

兵庫県立大工学研究科¹,東京エレクトロン(株)²,東北大学未来科学技術共同研究センター³

⁰山口 明良¹, 稲葉 賢二³, 日野浦 諒¹, 豊田 紀章¹, 原 謙一², 畠山 望³, 宮本 明³, 山田 公¹

Graduate school of engineering, Univ. of Hyogo¹, Tokyo Electron Limited²,

New Industry Creation Hatchery Center, Tohoku Univ.³

^oAkira Yamaguchi¹, Kenji Inaba³, Ryo Hinoura¹, Noriaki Toyoda¹, Ken-ichi Hara²,

Nozomu Hatakeyama³, Akira Miyamoto³, and Isao Yamada¹

E-mail: er12r057@steng.u-hyogo.ac.jp

これまで、本研究グループでは、ガスクラスターイオンビーム(GCIB)を用い、Si, Au, DLC, FePt などの様々な材料の平坦化を行ってきた。GCIBは、衝突の際に被スパッタ粒子が水平方向へ多く スパッタされるラテラルスパッタ効果を起こすため、表面平坦化が可能である。本研究では、従 来の研磨方法では平坦化が困難なRu膜のGCIBによる平坦化について照射実験および計算機シミ ュレーションによる検討を行った。

図1に Ru 膜の照射前の表面と Ar-GCIB, N₂-GCIB それぞれを照射した後の Ru 表面の AFM 像を 示す。Ru の膜厚は 50 nm である。照射条件は、加速電圧 5 kV、イオン照射量は 1×10^{16} ions/cm² である。照射前の平均表面粗さ(Ra)は、0.55 nm である。Ar-GCIB 照射後の Ra は 0.88 nm であり、 照射前に比べて平坦性が悪化している。それに対して、N₂-GCIB 照射後は Ra が 0.16 nm であり、 照射前に比べて Ra が 1/3 以下になり平坦性が大きく改善されている。

次に、Ar-GCIB と N₂-GCIB の照射効果の違いを調べるため、分子動力学(MD)シミュレーション で、Ar および N₂-GCIB が Ru 基板に付与するエネルギーを計算した。図 2 に Ar-GCIB と N₂-GCIB の衝突前のエネルギー(加速エネルギー)と、Ru 基板に与えるエネルギーの関係を示す。Ar-GCIB に含まれる原子数は 500、N₂-GCIB 中の分子数は 500 であり、衝突前のエネルギーは 5 keV, 10 keV, 15 keV とした。図 2 から、Ar-GCIB に比べて、N₂-GCIB は基板に与えるエネルギーが小さいこと がわかる。これは、N₂-GCIB が分子であり、N₂クラスターの崩壊と共に分子が解離する時にエネ ルギーを損失するためであることが分かった。この結果、

Ar-GCIB よりも N_2 -GCIB の方が、大きな突起ができに くく、平坦化効果が大きくなると考えられる。

図 1 Ar, N₂-GCIB 照射前後の Ru 表面像 (Va=5 kV, 1×10¹⁶ ions/cm²)

図 2 MD シミュレーションによる Ar, N₂-GCIB の 衝突前のエネルギーと基板に与えるエネルギー の関係