
18a-D4-2

Systematic incorporation of hybrid APCs into YBCO thin films for enhancing the critical current properties

^{o(P)}Alok K. Jha¹, Kaname Matsumoto¹, Tomoya Horide¹, Shrikant Saini², Paolo Mele², Yutaka Yoshida³ and Satoshi Awaji⁴

¹Kyushu Institute of Technology, ²Hiroshima University, ³Nagoya University, ⁴Tohoku University E-mail: akjha@post.matsc.kyutech.ac.jp

In this paper, we discuss the effect of hybrid (columnar and spherical) artificial pinning centers (APCs) on the vortex pinning properties of YBCO thin films. The structural, microstructural and transport properties of YBCO thin films with varying concentration of BaSnO₃ (BSO) and Y₂O₃ nanoscale inclusions will be presented. The effect of systematic incorporation of hybrid APCs on the critical current properties of YBCO thin films on single crystal substrates will be discussed in detail. Mixed targets of YBCO+BSO with Y₂O₃ sectored piece on the top have been used for the deposition of YBCO based nanocomposite thin films. At 77 K and an applied magnetic field of 1 T, J_C of pure YBCO film has been obtained as 0.25 MA which increases up to 1.24 MA for the nanocomposite film whereas, the pinning force density (F_{pmax} .) value increases from 2.54 GN/m³ for pure YBCO film to ~ 18.5 GN/m³ for the nanocomposite film. Apart from the increased J_C and F_p values, the nanocomposite films also exhibit reduced anisotropy in J_C -B- Θ measurement. In the figure below, systematic change in the J_C peak along the *c*-axis can be seen. The table presented here contains several superconducting parameters of pure YBCO film and YBCO+BSO+Y₂O₃ nanocomposite films. Controlling the proportion of hybrid APCs into YBCO thin film is expected to result in much better critical current density performance of YBCO thin films.

Composition	T _C (0) (K)	J _C 0 T, 77 K B ∥ c (MA cm ⁻²)	J _C 1 T, 77 K B c (MA cm ⁻²)	J _C 1 T, 77 K B ∥ a-b (MA cm ⁻²)	Anisotropy ratio (J _{Ca-b} / J _{Cc}) 77 K, 1 T	F _{pmax.} , 77 K B ∥ c (GN m ⁻³)	В _{тах.} 77 К
YBCO	89.8	1.72	0.25	0.47	1.88	2.54	2
YBCO+BSO2%+ Y ₂ O ₃ B	85.5	2.02	0.43	0.53	1.23	9.0	4
YBCO+BSO3%	89.0	1.92	0.61	0.26	0.43	8.25	2
YBCO+BSO3%+ Y ₂ O ₃ A	88.7	2.26	0.57	0.35	0.61	8.27	2.6
YBCO+BSO3%+ Y ₂ O ₃ B	88.3	1.32	0.64	0.65	1.02	10.9	2.8
YBCO+BSO4%	88.1	4.11	1.24	0.76	0.61	18.5	2.2
YBCO+BSO4%+ Y ₂ O ₃ A	87.6	3.51	0.93	0.48	0.52	16	2.8
YBCO+BSO4%+ Y ₂ O ₃ B	86.8	2.69	0.61	0.48	0.79	10.3	2.8

Variation of J_c with the orientation of applied magnetic field with respect to the *c*-axis for YBCO, YBCO+BSO and YBCO+BSO+Y₂O₃ nanaocomposite films measured at 77 K and 1 T.

The comparison of various superconducting parameters for YBCO, YBCO+BSO and YBCO+BSO+Y_2O_3 nanocomposite films with varying concentration of BSO and Y_2O_3