18a-D8-12

High-k/SiO2界面のダイポール層形成メカニズムの考察

-多重極子誘起酸素移動モデルの提案-

Mechanism of Dipole Layer Formation at High-k/SiO₂ Interface:

Multipole-induced Oxygen Migration Model

早大理工¹,早大ナノ機構²,明大理工³,兵庫県立大⁴,JST-CREST⁵,

^O志村昂亮¹, 栗山亮¹, 橋口誠広¹,高橋隆介¹, 小椋厚志^{3,5},佐藤真一^{4,5},渡邉孝信^{1,2,5}

Waseda Univ.¹, Waseda-INN², Meiji Univ.³, University of Hyogo⁴, JST-CREST⁵,

^OK. Shimura¹, R. Kuriyama¹, M. Hashiguchi¹, R. Takahashi¹, A. Ogura^{3,5},

S. Satoh^{4,5}, and T. Watanabe^{1,2,5}

E-mail: shimura@watanabe.nano.waseda.ac.jp

High-k 絶縁膜と SiO₂ 層の界面ではダイポー ル層が形成されることが知られている[1]。その 起源には諸説あり、電気陰性度の差で説明でき るとする説や、酸素面密度差による酸素イオン の移動で説明するモデル[2]などがある。我々は 分子動力学計算を用いて high-k/SiO₂ 界面モデ ルを作成し、Oイオンの移動によって界面ダイ ポール層を再現できるか調査を行っている[3]。 本講演では、シミュレーション結果の解析に基 づき、カチオン周辺の多重極子モーメントの差 が、Oイオンの移動の駆動力となって界面ダイ ポールが形成されるという、新しいモデルを提 案する。

前回の講演[3]で、一定の電荷をもつ単純な2 体相互作用モデルを用いたシミュレーション 結果を報告し、SiO₂よりもO原子面密度の高い Al₂O₃を high-k 膜とした場合に界面ダイポール 層が再現できることを示した。一方、SiO₂より もO原子密度が低い Y₂O₃を high-k 膜とした場 合ではダイポール層は再現できなかった (Fig.1)[3]。つまりこの結果は、Oイオンの移動 でダイポール層を再現できるが、単に酸素密度 の差で決まっているわけではないことを示し ている。

今回、Al₂O₃/SiO₂界面のOイオン(O)の動きを詳しく調べたところ、界面形成の極初期段階からAl₂O₃内のOがSiO₂層へと移動していることが確認され、逆方向へ移動するOは観測されなかった(Fig.2a)。界面ダイポールが出現しなかったY₂O₃/SiO₂界面ではOはどちらの側にも移動していない(Fig.2b)。この結果から、ダイポール層形成に繋がるO⁻の移動は、O⁻の濃度差によるのではなく、遠隔相互作用、即ちクーロン力が原因で起きていると考えられる。

シミュレーションでは当然、high-k 領域も SiO₂領域も電荷中性を保っている。この状況で クーロン力が発生するとすれば、局所的な電荷 の偏り、即ちカチオン周辺の多重局子モーメン トが源と考えられる。そこで、SiO₂、Al₂O₃、 Y₂O₃のカチオン周辺の電荷分布を多重極子展 開し[4]、Si⁺、Al⁺、Y⁺を中心とする多重極子モ ーメントから Oが受ける力を計算した(Fig.3)。 Si⁺周辺では8 重極子が生じており、Al⁺、Y⁺で は 16 重極子が生じる。各カチオン周辺の多重 極子モーメントから受ける引力ポテンシャル の最大値で比較すると、Si⁺と Al⁺の差の方が、 Si⁺と Y⁺の差より大きいことが分かった(Fig.4)。 つまり、Al₂O₃/SiO₂界面では、Si⁺周辺の8重極 子にO⁻が引き寄せられ、界面ダイポールが生じ たと考えられる。 Y_2O_3 /SiO₂界面では、Y-O 間 距離の増大に伴ってY⁺周辺の16重極子が強く なり、Si⁺の引力が相対的に減少したため、O⁻ の移動が抑制されたと考えられる。このシミュ レーションではY⁺とO⁻の分極率を過小評価し ているため、有効電荷を正しく再現すれば、Y⁺ 周辺の16重極子が更に強化され、逆向きのダ イポール層が再現できるかもしれない。

多重極子に注目する本モデルは、酸素原子密 度と電気陰性度の両方を含むため、従来の説を 統一するものであることも強調しておく。

尚、本研究は JST-CREST の助成を受けて行 われた。

[参考文献][1]K. Iwamoto et la., APL 92, 132907 (2008). [2] K. Kita et al., APL 94, 132902 (2009). [3] 栗山他, 第 74 回応 用物理学会学術講演会,17p-B5-3, 2013. [4] C. E. Whitehead et al., J. Comp. Chem. 24, 512, (2003).

