18a-D8-5

SiO₂, Si₃N₄, Si 中の窒化種(NH_x)の拡散と反応

Diffusion-reaction mechanisms of nitriding species (NH_x) in SiO₂, Si₃N₄ and Si (株)東芝 研究開発センター:^O中崎靖, 平野泉, 宮田正靖, 加藤弘一, 三谷祐一郎 (株)東芝 セミコンダクター&ストレージ社:山下寛樹, 赤堀浩史 Toshiba Corporate R&D Center: ^OY. Nakasaki, I. Hirano, M. Miyata, K. Kato and Y. Mitani

Toshiba Semiconductor & Storage Products Company : H. Yamashita and H. Akahori E-mail : yasushi.nakasaki@toshiba.co.jp

【目的】 ロジック・メモリデバイスを問わずSi窒化膜(SiN膜)は水分・金属・酸化剤の拡散防止膜として用いられ てきた。SiN膜はNH3を窒化種としたCVD法で成膜される事が多い。FEOLでは比較的高温で成膜されるが、 BEOLではプラズマCVD等による低温成膜が避けられないため必ずしも化学量論組成にならない¹⁾。また、メモリ デバイスでは高効率な電荷蓄積のために敢えて化学量論組成からずらされる。化学量論組成にならない成膜 方法では反応副生成物が残存し易く、これによるデバイス特性・信頼性の経時劣化対策は極めて重要である²⁾。 ー方、MONOS型メモリの書込・消去ストレス+ベークによる界面準位生成・回復過程において、Si-H結合の 切断・再生(R-Dモデル³⁾)におけるHとは異なる拡散種による界面準位の回復促進機構が提案された⁴⁾。今回、 SiN膜起因でH以外の拡散種としてNH、を想定し、デバイス共通の材料中での挙動を検討したので報告する。 【方法】 α-quartz(無欠陥,酸素欠損V₀,格子間酸素O_i,伸びたSi-O結合), α-Si₃N₄, Si各々の2×2×2スーパ ーセル、及び同サイズのアモルファスSiO2モデルを用い、中性状態NH_x(x=1,2)の種々な配置をスピン分極GGA -DFT法で構造最適化し、生成エネルギー・拡散障壁を調べた。交換相関汎関数はGGA-PW91を用いた。 【結果】 (Fig.1&2参照)①無欠陥SiO₂(Si₃N₄)へはNH₁(g)(gは真空中の孤立分子を示す)は0.67(0.53)eV で発熱的に格子に割り込み(ΞSi-N(H)-X-Si=, X=O,N)過酸化架橋に類似の構造をとるが、NH2(g)は 1.25(1.70)eVで吸熱的にSilc5配位するに留まる。NH1, NH2共にSiO2中の方が安定である。これらの状況は伸 長したSi-O結合の存在下でも同じである。またSiO₂(Si₃N₄)へのNH₁(g)溶解にはinterstice状態が存在し 0.32(1.01)eVの吸熱反応である。α-quartz中のNH1に関して、比較的高温(≥400°C)では一旦singletで格子 に割り込んだ(ΞSi-N(H)-O-SiΞ)後にtripletに励起され(E_{S→T}=1.04eV~0.67+0.32)再び格子から外れて拡 散する(E_a=0.48eV)との報告がある⁵⁾。上記のinterstice状態はこの励起状態に対応する。②無欠陥SiO₂中の NH1(NH2)拡散は、network-formerとなるNH1よりも5配位Si構造のみを経るNH2の方が拡散障壁が低く容易 である(拡散障壁が更に低いとの報告のあるNH1の項間交差経路⁵⁾は探索中)。③SiO2中のVoはNH1(NH2)

	NH ₁	NH ₂	
w/o defect stretched Si-O			
Vo	A Contraction of the second se		barrier ? eV
			barrier 1.7 eV
O _i		€, € +	
poly-, c-Si			barrier 1.6 eV
Ô, <u>(</u> , <u>)</u> ;=	⇒>>, ↓ ↓	€	

を発熱的に(6.70(1.38) eV)捕獲する(\equiv Si-N(H_x)-O-Si \equiv)。捕獲後のNH₂には、Hを1個解 離し安定化する(0.18eV↓の発熱)経路と、NH₂の まま拡散する経路がある。④SiO₂中のO_i(過酸化 架橋構造)はNH₂とは反応しないが、NH₁はO_iを 引き抜いてHNOを形成・拡散し、Si中で自発的に 解離する(\equiv Si-N(H)-Si \equiv , \equiv Si-O-Si \equiv)。⑤Si中 ではNH₁(NH₂)(g)は、第2近接Si間を架橋した interstice状態(0.65eV発熱(1.92eV吸熱))と、最 近接Si-Si間に割り込んだbond center状態 (intersticeから3.02(2.37)eV↓の発熱)をとる。何れ のNH₂もHを1個解離しうるが、一旦NH₁になると、 bond center状態が極めて安定でNH₁の拡散障壁 が2.5eV以上になると共に、残るH₁の解離障壁も 2.8eVを超えるため、bond center 状態に留まる。

【結論】SiN膜起因の反応副生成物であるNH_x(x=1,2)は、 外方拡散で系外へ除去される以外に層間SiO2膜にも取り込 まれ易く、一旦取り込まれるとBEOLプロセス温度でも容易に 内方拡散する。このためNおよびHの担体となり、最終的には Si/SiO2界面の信頼性の経時変化に大きな影響を及ぼす。 SiN膜の組成制御と後プロセスの最適化はデバイス高信頼化 に極めて重要である。

Fig.1 (upper) Comparison of reaction products of NH₁ (left) and NH₂ (right) in α -quartz (upper 3) and Si (lower 1) at neutral state. **Fig.2 (lower)** Variations of diffusion barrier of NH₁ (left) and NH₂ (right) at neutral state in α -quartz along various direction.

1) Z. Lu et al., J. Non-Cryst. Solids, <u>187</u>, 340('95). 2) M. A. Alam, IEDM2003, 345('03). 3) S. Fujii et al., Jpn. J. Appl. Phys., <u>51</u>, 124302('12). 4) S. Fujii et al., IRPS2013, 3B.5. 5) W. Orellana et al., Phys. Rev. B, <u>70</u>, 125206('04).