高周波重畳直流スパッタ AI 添加 Zn0 透明電導電膜 の電気特性に対する成膜電力の最適化

Optimization of deposition power to improve electrical properties of highly transparent conductive Al-doped ZnO films deposited by RF-superimposed DC magnetron sputtering

1) 高知工科大総研、2) 高知高専機械工学科

⁰野本淳一¹⁾、宋華平¹⁾、牧野久雄¹⁾、岸本誠一^{1),2)}、山本哲也¹⁾

1) Research Inst. Kochi Univ. Tech., 2) Kochi National College of Tech.

[°]J. Nomoto¹⁾, H. Song¹⁾, H. Makino¹⁾, S. Kishimoto^{1), 2)}, T. Yamamoto¹⁾,

E-mail: nomoto.junichi@kochi-tech.ac.jp

【はじめに】多結晶 ZnO 系透明導電膜において、高ホール移動度 (μ_{Hall}) を実現する設計指針を 構築することを目的に、これまで各種マグネトロンスパッタ (MS) 成膜法により成膜した Al 添 加 ZnO (AZO) 膜の光学移動度 μ_{opt} 及び粒界でのキャリア移動度 μ_{gb} と μ_{Hall} との相互関係を定 量的に検討してきた。解決策として、① μ_{opt} の増大と ②粒界散乱の寄与の指標 μ_{opt}/μ_{gb} の低減、 とを提案している。本研究では、この解決策に対する有力な薄膜成長法の一つとして、高周波重 畳直流 (RF+DC)-MS 成膜法を選択し、RF と DC 電力との組み合わせが AZO 膜の特性に及ぼす 影響について検討した。前記組み合わせに対する最適化について、電気特性の観点から議論する。 【実験方法】 AZO 膜 (膜厚は 500 nm、基板温度は 200 °C) は、ZnO に Al₂O₃(2.0 もしくは 1.0 wt.%) を混合した円形高密度焼結体をターゲットとして用いる MS 成膜装置 (ULVAC, CS-L) を 用いて、大きさ 10 cm 角の無アルカリガラス基板 (Corning, EAGLE XG) 上に供給する RF 電力 (0 ~ 200 W) 及び DC 電力 (0 ~ 200 W) を変化させて成膜した。なお、成膜中は、均一な膜 厚分布を実現するために、基板をおよそ 10 rpm の速度で回転させている。AZO 膜の特性とし て、電気、光学及び結晶学的特性を評価した。

【結果と考察】 AZO 膜の μ_{opt} 及び μ_{gb} の大きさは供給する成膜電力に著しく依存した。一例と して RF 電力と DC 電力とをそれぞれ変化させて成膜された AZO (2.0 wt.%) 膜の μ_{Hall} 、 μ_{opt} (膜 の透過率及び反射率スペクトルに Drude 誘電関数をフィッテイング)を表1に示す。表1には μ_{opt} ≒ μ_{ig} (結晶子内キャリア移動度) と仮定して算出された粒界散乱の寄与の程度: μ_{ig} / μ_{gb} も示し ている。表1から明らかなように、DC100+RF100W の場合において、検討した範囲の中で最も 高い μ_{Hall} が実現された。その要因は、高い μ_{opt} と低い μ_{ig} / μ_{gb} とが実現されていることに因る。 図1には、これら AZO 膜の μ_{opt} と ZnO の (002) 面及び (004) 面に該当する回折角度におけ るX 線回折ピークの強度比 ((004) / (002)) との関係を示した。図1から明らかなように μ_{opt} が ピーク強度比 ((004) / (002)) の増大に伴って上昇する傾向が見出された。すなわち、高い μ_{opt} の 実現は、適当な RF 電力を重畳したことによって結晶学的特性 (c軸配向性)の改善に因る μ_{ig} の 増大を反映していることを示唆していると考えられる。

【謝辞】日本学術振興会科研費基盤研究 A (研究費番号 30320120) による支援を受けている。

表1 AZO 膜の各種キャリア移動

Power [W]		$\mu_{ ext{Hall}}$	$\mu_{\rm opt}$	/
DC	RF	[cm ² /Vs]	[cm ² /Vs]	$\mu_{ ext{ig}}/\mu_{ ext{gb}}$
200	0	29.3	38.0	0.30
100	100	33.9	38.2	0.13
50	200	25.9	37.4	0.45
	100	26.2	36.8	0.41

図1 光学移動度: µ_{opt}とX線回折ピークの強度 比 ((004) / (002)) との関係