A simple demonstration of a fallacy on universal gates for quantum computation

Mitsuru Hamada
Quantum ICT Research Institute，Tamagawa University
1－1 Tamagawa－Gakuen 6－chome，Machida－shi，Tokyo 194－8610 E－mail：mitsuru＠ieee．org

The aim of this report is to present a simple demon－ stration of a widespread fallacy regarding universal gates often found in textbooks on quantum computation．This has been overlooked for more than ten years［1］and prop－ agated widely $[2,3]$ ．The core of the fallacy is the fol－ lowing erroneous claim．Writing the＇rotation＇about a real unit vector \hat{v} by an angle θ as $R_{\hat{v}}(\theta)$ ，they have claimed，without a proof，that any 2×2 unitary matrix can be written as $e^{i \phi} R_{\hat{m}}(\psi) R_{\hat{n}}(\theta) R_{\hat{m}}\left(\psi^{\prime}\right)$ for appropriate choices of real numbers ϕ, ψ, θ ，and ψ^{\prime} if \hat{m} and \hat{n} are non－ parallel real unit vectors in three dimensions $[1$, p．176， Exercise 4．11］，［2，p．34］，［3，p．66，Theorem 4．2．2］．

Definitions．The following Pauli matrices are used：

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The 2×2 identity matrix is denoted by I ．We put $\hat{y}=$ $(0,1,0)^{\mathrm{T}}$ and $\hat{z}=(0,0,1)^{\mathrm{T}}$ ． \mathbb{R} and \mathbb{C} denote the set of real numbers and that of complex numbers，respectively． We put

$$
\begin{equation*}
R_{\hat{v}}(\theta)=\left(\cos \frac{\theta}{2}\right) I-i\left(\sin \frac{\theta}{2}\right)\left(v_{x} X+v_{y} Y+v_{z} Z\right) \tag{1}
\end{equation*}
$$

for $\hat{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}} \in \mathbb{R}^{3}$ with $\|\hat{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=1$ and $\theta \in \mathbb{R}$ ．For example，

$$
R_{\hat{z}}(\psi)=\left(\begin{array}{cc}
e^{-i \frac{\psi}{2}} & 0 \tag{2}\\
0 & e^{i \frac{\psi}{2}}
\end{array}\right), \quad \psi \in \mathbb{R} .
$$

Demonstration of the fallacy．We focus on disprov－ ing the above claim in the case where the two vectors \hat{m} and \hat{n} are $\hat{z}=(0,0,1)^{\mathrm{T}}$ and $\hat{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}}$ with $0<\left|v_{z}\right|<1$ and $\|\hat{v}\|=1$ ．Namely，we will show that whenever $\hat{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}} \in \mathbb{R}^{3}$ is a unit vector with $0<\left|v_{z}\right|<1$ ，there exists some 2×2 unitary matrix that cannot be written in the form $e^{i \phi} R_{\hat{z}}(\psi) R_{\hat{v}}(\theta) R_{\hat{z}}\left(\psi^{\prime}\right)$ for any real numbers ϕ, ψ, θ ，and ψ^{\prime}（while \hat{v} and \hat{z} are non－ parallel unit vectors by the assumption $\left|v_{z}\right|<1$ ）．（The counterexamples below generalize to the case of generic non－parallel vectors \hat{m} and \hat{n} straightforwardly．）

Proposition 1 Let arbitrary numbers $a, b, c, d \in \mathbb{C}$ and an arbitrary unit vector $\hat{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}} \in \mathbb{R}^{3}$ be given． If $|a|<\left|v_{z}\right|$ ，then

$$
\left(\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right) \neq e^{i \phi} R_{\hat{z}}(\psi) R_{\hat{v}}(\theta) R_{\hat{z}}\left(\psi^{\prime}\right)
$$

for any $\phi, \psi, \theta, \psi^{\prime} \in \mathbb{R}$ ．
Proof．The absolute value of the（1，1）－entry of $e^{i \phi} R_{\hat{z}}(\psi) R_{\hat{v}}(\theta) R_{\hat{z}}\left(\psi^{\prime}\right)$［or of $R_{\hat{v}}(\theta)$ ，see（2）］is

$$
\sqrt{\cos ^{2} \frac{\theta}{2}+v_{z}^{2} \sin ^{2} \frac{\theta}{2}}=A(\theta) .
$$

Note $\min _{\theta \in \mathbb{R}} A(\theta)=\left|v_{z}\right|$ ．Hence，comparing the $(1,1)$－ entries of both sides of（3），we obtain the proposition．

This proposition demonstrates the fallacy mentioned above．Specifically，for any number $a \in \mathbb{C}$ with $|a|<\left|v_{z}\right|$ ， any unitary matrix whose $(1,1)$－entry equals a ，such as

$$
\left(\begin{array}{cc}
a & -\sqrt{1-|a|^{2}} \tag{4}\\
\sqrt{1-|a|^{2}} & a^{*}
\end{array}\right)
$$

cannot be written in the form $e^{i \phi} R_{\hat{m}}(\psi) R_{\hat{n}}(\theta) R_{\hat{m}}\left(\psi^{\prime}\right)$ for any $\phi, \psi, \theta, \psi^{\prime} \in \mathbb{R}$ by the proposition．This is a coun－ terexample to the claim in question in the case where $\hat{m}=\hat{z}, \hat{n}=\hat{v}$ ，and $0<\left|v_{z}\right|<1$ ．（There exist infinitely many numbers $a \in \mathbb{C}$ with $|a|<\left|v_{z}\right|$ since $0<\left|v_{z}\right|$ ．）

The theorem in［4］，with which the counterexamples were first obtained，soon led to the following constructive result（unpublished）．The least value of a positive integer k such that any rotation in $\mathrm{SU}(2)$ can be decomposed into a product of k rotations about either \hat{m} or \hat{n} is upper－ bounded by $2\left\lceil\pi /\left(2 \arccos \left|\hat{m}^{\mathrm{T}} \hat{n}\right|\right)\right\rceil+1$ for any pair of unit vectors $\hat{m}, \hat{n} \in \mathbb{R}^{3}$ with $\left|\hat{m}^{\mathrm{T}} \hat{n}\right|<1$ ．

The reader is referred to［5］for stronger results．The results in［5］also demonstrate the fallacy in a different way，in terms of a geodesic metric，though a trifle therein．

This work was supported by SCOPE，and by JSPS KAKENHI Grant numbers 22540150 and 21244007.
［1］M．A．Nielsen and I．L．Chuang，Quantum Computation and Quantum Information，10th anniversary ed．（Cam－ bridge University Press，Cambridge，UK，2010）．
［2］K．R．Parthasarathy，Lectures on Quantum Computation， Quantum Error Correcting Codes and Information Theory （Narosa Publishing House，New Delhi，India，2006）．
［3］P．Kaye，et al．，An Introduction to Quantum Computing （Oxford University Press，New York，2007）．
［4］M．Hamada，APS 2013 March Meeting，abstract（2012） http：／／meetings．aps．org／link／BAPS．2013．MAR．H1．318．
［5］M．Hamada，manuscript（2013），arXiv：1401．0153 ［math．ph］．

