18p-D4-2

Nanostructure and Pinning Performance of YBa₂Cu₃O_x Thin Films Added With Artificial Pinning Centers of Different Dimensionality

Hiroshima University¹, Kyushu Institute of Technology², Tohoku University³, Nagoya University⁴, CRIEPI⁵, Shizuoka University⁶, ICMAB Barcelona⁷

OPaolo Mele¹, Shrikant Saini¹, Alok K. Jha², Tomoya Horide², Kaname Matsumoto², Satoshi Awaji³,

Yutaka Yoshida⁴, Ataru Ichinose⁵, Ryusuke Kita⁶, Jaume Gazquez⁷, Roger Guzman⁷, Teresa

Puig⁷, Xavier Obradors⁷

E-mail: pmele@hiroshima-u.ac.jp

In order to be disclosed to the practical applications (lossless current transportation, winding of magnets and so on), superconducting materials should possess not only T_c , but also J_c (critical current density) and pinning force (F_p) as large as possible to have a wide application range. Introduction of nanosized Artificial Pinning Centers (APCs) was widely used to strongly enhance J_c and F_p of High Temperature Superconductors (HTSC) like YBa₂Cu₃O_x (YBCO, $T_c = 92$ K) in magnetic field.

At first, we considered addition of BaSnO₃ (BSO) to YBCO films grown on SrTiO₃ substrates by Pulsed Laser Deposition (PLD). By ablation of mixed BSO-YBCO targets with increasing BSO content (2~9 wt%), we obtained high quality YBCO thin films incorporating BSO in form of nanorods, which are classified as one-dimensional APCs (1D-APCs). YBCO films added with 4 wt% BSO have $J_c = 0.3 \text{ MA/cm}^2$ and $F_p^{MAX} \sim 28 \text{ GN/m}^3$ (77K, 3T and B//c). However, J_c is intrinsically anisotropic with the direction of applied magnetic field (with a maximum for B//c axis) and this is a critical issue for practical applications, since the value of J_c might be constant in all directions of applied magnetic field.

To solve this issue, we tried the incorporation of Y_2O_3 nanoparticles (three-dimensional APCs, 3D-APCs) inside the YBCO film, using surface-modified YBCO targets. Areas of Y_2O_3 sectors on YBCO target were increased (2.51%, 5.44% and 9.22% of the YBCO pellet area). Randomly distributed Y_2O_3 particles, which density was proportional to the area of sector, were incorporated in YBCO films. Consistently with the microstructure, J_c was isotropic. The 5.44 A% Y_2O_3 added sample presented F_p^{MAX} =14.3 GN/m³ (77K, 3T) which is significantly large, tough inferior to the value reported in YBCO-BSO films in same conditions.

Ultimate approach we tried was combination of advantages of 1D- and 3D-APCs pinning, incorporating BSO nanorods and Y_2O_3 nanoparticles at the same time. By wide screening of BSO and Y_2O_3 contents and optimization of the experimental conditions, it was possible to combine large in-field performance and isotropic behavior. Details will be discussed at the conference.

Overall, microstructure, distribution, concentration and dimensionality of APCs strongly influence the in-field performance of YBCO films and, indeed, represent a powerful tool to understand the pinning mechanisms.